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GRADIENT ESTIMATES FOR ELLIPTIC EQUATIONS IN

DIVERGENCE FORM WITH PARTIAL DINI MEAN

OSCILLATION COEFFICIENTS

Jongkeun Choi, Seick Kim, and Kyungrok Lee

Abstract. We provide detailed proofs for local gradient estimates for
elliptic equations in divergence form with partial Dini mean oscillation

coefficients in a ball and a half ball.

1. Introduction and main results

We consider second-order elliptic equations in divergence form

(1.1) div(ADu) = div f

with coefficient A and data f which are irregular in one direction. The regular-
ity theory for this type of equations has important applications in the problems
of linearly elastic laminates and composite materials; see [7]. It is known that
any weak solution u to (1.1) satisfies Du ∈ Lploc (1 < p < ∞) provided that
A is merely measurable in one direction and has small mean oscillation in the
other directions, and that f ∈ Lp; see, for instance, [3, 9, 10].

In a recent paper [5], the first named author and Dong studied L∞-theory
for stationary Stokes systems in divergence form. They proved that any weak
solution to the Stokes system has bounded gradient provided that the coeffi-
cients and data satisfy partial Dini mean oscillation condition. We shall say
that a locally integrable function is of partial Dini mean oscillation if its L1-
mean oscillation with respect to x′ = (x2, . . . , xd) (after a rotation) satisfies the
Dini condition; see Definition 1.1 for more precise definition. As remarked in
[5], the corresponding regularity result can be established for elliptic equations
other than Stokes systems.
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In this paper, we provide a detailed proof for both interior and boundary
L∞-regularity of weak solutions to the elliptic equation (1.1) with the coeffi-
cient and data which are of partial Dini mean oscillation. This may not be
a surprising result to experts, but it still demands some effort and caution to
deal with regularity theory for elliptic equations with irregular coefficients in
one direction. Thus, we anticipate that our paper fills a gap in the literature
and serves as a good reference to non-experts.

To state our main results more precisely, we introduce some notation and
definitions. We use x = (x1, x

′) to denote a generic point in Rd (d ≥ 2); it
should be understood that x1 ∈ R and x′ = (x2, . . . , xd) ∈ Rd−1. We also write
y = (y1, y

′) and xo = (xo1, x
′
o), etc. We denote

Br(x) = {y ∈ Rd : |x− y| < r},

B′r(x
′) = {y′ ∈ Rd−1 : |x′ − y′| < r}.

In other words, Br(x) and B′r(x
′) are the usual Euclidean balls in Rd and Rd−1,

respectively. We also denote

B+
r (x) = Br(x) ∩ Rd+, where Rd+ = {x = (x1, x

′) ∈ Rd : x1 > 0}.

We warn the readers that B+
r (x) is not necessarily a half ball. We shall often

use the abbreviations Br, B
+
r , and B′r when the center is the origin. We write

Dx′u = (D2u, . . . ,Ddu) so that Du = (D1u,Dx′u) and

(u)Ω = –

∫
Ω

u dx =
1

|Ω|

∫
Ω

u dx,

where |Ω| denotes the Lebesgue measure of a measurable set Ω ⊂ Rd.

Definition 1.1. (a) Let f ∈ L1(B6). We say that f is of partial Dini mean
oscillation with respect to x′ in B4 if the function ωf : (0, 1] → [0,∞)
defined by

ωf (r) := sup
x∈B4

–

∫
Br(x)

∣∣∣∣f(y)− –

∫
B′r(x′)

f(y1, z
′) dz′

∣∣∣∣ dy
satisfies the Dini condition∫ 1

0

ωf (r)

r
dr <∞.

(b) Let f ∈ L1(B+
6 ). We say that f is of partial Dini mean oscillation with

respect to x′ in B+
4 if the function ωf : (0, 1]→ [0,∞) defined by

ω+
f (r) := sup

x∈B+
4

–

∫
B+
r (x)

∣∣∣∣f(y)− –

∫
B′r(x′)

f(y1, z
′) dz′

∣∣∣∣ dy
satisfies the Dini condition∫ 1

0

ω+
f (r)

r
dr <∞.
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The main results of the paper are as follows. Let L be a differential operator
in divergence form

Lu = div(ADu) = Di(a
ijDju),

where we use the Einstein summation convention on repeated indices. The
coefficient A = (aij)di,j=1 is a d×d matrix-valued function in Rd, which satisfies
the strong ellipticity condition, i.e., there is a constant λ ∈ (0, 1] such that for
any x ∈ Rd and ξ ∈ Rd, we have

(1.2) |A(x)| ≤ λ−1, aij(x)ξjξi ≥ λ|ξ|2.
For p ∈ [1,∞), we say that u ∈ W 1,p(Ω) is a weak solution of Lu = div f + g
in a domain Ω if ∫

Ω

aijDjuDiφdx =

∫
Ω

(fiDiφ− gφ) dx

for any φ ∈ C∞o (Ω).

Theorem 1.2. Let p ∈ (1,∞) and u ∈W 1,p(B6) be a weak solution of

Lu = div f in B6,

where f = (f1, . . . , fd) ∈ Lp(B6)d and f1 ∈ L∞(B6). If A and f are of partial
Dini mean oscillation with respect to x′ in B4, then we have

u ∈W 1,∞(B1).

Moreover, Û = a1jDju− f1 and Dx′u are continuous in B1.

Remark 1.3. One can extend the results in Theorem 1.2 to weak solutions of

Lu = div f + g in B6,

where g ∈ Lq(B6) with q > d. Indeed, by [6, Lemma 3.1], there exists G ∈
W 1,q(B6)d such that divG = g in B6, which implies that u satisfies

Lu = div(f +G) in B6.

Moreover, by the Morrey inequality, we have that G ∈ Cα(B6)d with α =
1− d/q, and thus, G is of partial Dini mean oscillation.

Remark 1.4. Due to Theorem 3.2 with scaling and covering arguments, we see
that Theorem 1.2 still holds for every W 1,1-weak solutions.

Theorem 1.5. Let p ∈ (1,∞) and u ∈W 1,p(B+
6 ) be a weak solution of{

Lu = div f in B+
6 ,

u = 0 on B6 ∩ ∂Rd+,

where f = (f1, . . . , fd) ∈ Lp(B+
6 )d and f1 ∈ L∞(B+

6 ). If A and f are of partial
Dini mean oscillation with respect to x′ in B+

4 , then we have

u ∈W 1,∞(B+
1 ).

Moreover, Û = a1jDju− f1 and Dx′u are continuous in B
+

1 .
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Remark 1.6. By the same reasoning as in Remarks 1.3 and 1.4, one can extend
the results in Theorem 1.5 to W 1,1-weak solutions of{

Lu = div f + g in B+
6 ,

u = 0 on B6 ∩ ∂Rd+,

where g ∈ Lq(B+
6 ) with q > d.

Upper bounds of the L∞-norm of Du and the modulus of continuity of Û
and Dx′u can be found in Sections 2.2 and 2.3. By using the upper bounds and
Remark 1.4 together with the fact that partially Hölder continuous functions
are of partial Dini mean oscillation, one can obtain a partial Schauder estimate
for W 1,1-weak solutions; see Remark 2.8 for more discussions. We note that
the partial Schauder estimate for elliptic equations was studied long time ago
by Fife [21]. See also [7, 12, 14, 17, 23, 24] and the references therein for some
recent work in this direction.

We say that a function is of Dini mean oscillation if its “full” mean oscillation
satisfies the Dini condition. It is recently shown in [13] that if the coefficients
are of Dini mean oscillation, then solutions to divergence and nondivergence
form elliptic equations satisfy interior C1 and C2 estimates, respectively. See
also [8] for the corresponding regularity results up to the boundary. Note that
any function that is of Dini mean oscillation is of partial Dini mean oscillation
with respect to any directions. For further discussions about equations/systems
with Dini mean oscillation coefficients, see [4, 15, 16]. We also refer the reader
to [18, 19] for elliptic equations in divergence and nondivergence form with
piecewise Dini mean oscillation coefficients.

The remainder of the paper is organized as follows. In Section 2, we provide
the proofs of the main results, namely, Theorems 1.2 and 1.5. In Section 3,
we give applications of the main theorems to weak type-(1, 1) estimates and
W 1,p-estimates for W 1,1-weak solutions.

We finish this section with a remark that our results can be extended to
strongly elliptic systems because their proofs do not use any scalar structure.

2. Proofs of main theorems

Throughout the paper, we use the following notation.

Notation 2.1. For nonnegative (variable) quantities A and B, we denote
A . B if there exists a generic positive constant C such that A ≤ CB. We
add subscript letters like A .a,b B to indicate the dependence of the implicit
constant C on the parameters a and b.

2.1. Preliminary lemmas

In this subsection, we prove some preliminary results which will be used in
the proof of Theorem 1.2. We define

L0u = div(ĀDu),
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where Ā = Ā(x1) = (āij(x1))di,j=1 are functions of x1 satisfying the strong
ellipticity condition (1.2).

The following lemma is about Lipschitz estimates of u and linear combina-
tions of Diu for W 1,2-weak solutions to L0u = 0 in a ball. Such a regularity
result is known to experts, and it can be proved by following the arguments
used in deriving [11, Lemma 3.5], where the authors obtained Hölder estimates
for linear combinations of derivatives of smooth solutions. See also [19, Lemma
2.7]. In this paper, for the sake of completeness, we provide a proof of the
lemma.

Lemma 2.1. If u ∈W 1,2(B2r) satisfies

L0u = 0 in B2r,

then we have

(2.1) ‖Du‖L∞(Br) .d,λ r
−d/2‖Du‖L2(B2r),

(2.2) [U ]C0,1(Br) + [Dx′u]C0,1(Br) .d,λ r
−d/2−1‖Du‖L2(B2r),

where U := ā1jDju and

[U ]C0,1(Br) := sup
x,y∈Br
x 6=y

|U(x)− U(y)|
|x− y|

.

Proof. We first prove (2.1). By scaling, it suffices to consider the case of r = 1.
We let 1 ≤ ρ1 < ρ2 < 2 and i ∈ {2, . . . , d}. Since the coefficient of L0 is a
function of only x1, we see that

L0(Diu) = 0 in Bρ2 ,

and thus by Caccioppoli’s inequality,

‖DDiu‖L2(Bρ1 ) .d,λ,ρ1,ρ2 ‖Diu‖L2(Bρ2 ).

By repeating this process, we have that for k ∈ {0, 1, . . .},

(2.3) ‖Dk
x′u‖L2(B√2) + ‖D1D

k
x′u‖L2(B√2) .d,λ,k ‖Du‖L2(B2),

where Dk
x′ denotes partial differentiation of order k with respect to x′. By

the Sobolev imbedding theorem, Dx′u(x1, x
′), as a function of x1 ∈ (−1, 1),

satisfies

sup
x1∈(−1,1)

|Dx′u(x1, x
′)|2 .

∫ 1

−1

|Dx′u(y1, x
′)|2 + |D1Dx′u(y1, x

′)|2 dy1.

On the other hand, there exists a positive integer k such that Dx′u(y1, x
′) and

D1Dx′u(y1, x
′) as a function of x′ ∈ B′1, satisfy

sup
x′∈B′1

(
|Dx′u(y1, x

′)|2 + |D1Dx′u(y1, x
′)|2
)

. ‖Dx′u(y1, ·)‖2Wk,2(B′1) + ‖D1Dx′u(y1, ·)‖2Wk,2(B′1).
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Combining these together and using (2.3), we get

(2.4) ‖Dx′u‖L∞(B1) ≤ ‖Dx′u‖L∞((−1,1)×B′1) . ‖Du‖L2(B2).

Since āij = āij(x1), from the equation L0u = 0, we have

(2.5) D1U = −
d∑
i=2

d∑
j=1

āijDiju,

which together with (2.3) implies that D1U has sufficiently many derivatives
in x′ with the estimates

‖Dk
x′U‖L2(B√2) + ‖D1D

k
x′U‖L2(B√2) .d,λ,k ‖Du‖L2(B2)

for any k ∈ {0, 1, . . .}. Thus, repeating the same argument as above, we have

(2.6) ‖U‖L∞(B1) . ‖Du‖L2(B2).

Notice from the definition of U that

(2.7) |D1u| =
1

ā11

∣∣∣∣∣U −
d∑
j=2

ā1jDju

∣∣∣∣∣ .d,λ |U |+ |Dx′u|.

Taking ‖ · ‖L∞(B1) of both sides of the above inequality and using (2.4) and
(2.6), we obtain that

‖Du‖L∞(B1) . ‖Du‖L2(B2).

We have proved (2.1). We note that by the standard covering argument, we
can replace B2 by B3/2 in the above.

We now turn to the proof of (2.2). Since L0(Dx′u) = 0 in B2, we by the
above to get

‖DDx′u‖L∞(B1) . ‖DDx′u‖L2(B3/2) . ‖Du‖L2(B2),

where we used Caccioppoli’s inequality in the second inequality. This together
with (2.5) yields that

‖D1U‖L∞(B1) + ‖Dx′U‖L∞(B1) . ‖Du‖L2(B2).

The lemma is proved. �

Lemma 2.2. Let u ∈ W 1,2(BR) satisfy div(ĀDu) = 0 in BR and set U :=
ā1jDju. Fix any q ∈ (0, 2]. Then, for any r ∈ (0, 1

2R] and θ = (θ1, θ
′) ∈ Rd,

we have (
–

∫
Br

|U − (U)Br |q + |Dx′u− (Dx′u)Br |q dx
)1/q

.d,λ,q
r

R

(
–

∫
BR

|U − θ1|q + |Dx′u− θ′|q dx
)1/q

.
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Proof. We first claim that(
–

∫
Br

|U − (U)Br |q + |Dx′u− (Dx′u)Br |q dx
)1/q

(2.8)

.d,λ,q
r

R

(
–

∫
BR

|U |q + |Dx′u|q dx
)1/q

.

By (2.1) and a well-known covering argument (see e.g., [22, pp. 80–82]), we
have

‖Du‖L∞(B2R/3) .d,λ,q R
−d/q‖Du‖Lq(BR).

From this together with (2.2), it follows that

[U ]C0,1(BR/2) + [Dx′u]C0,1(BR/2) . R
−d/2−1‖Du‖L2(B2R/3)

. R−d/2−1‖Du‖(2−q)/2L∞(B2R/3)‖Du‖
q/2
Lq(B2R/3)

. R−d/q−1‖Du‖Lq(BR).

Thus we have (recall r ≤ R/2)(
–

∫
Br

|U − (U)Br |q + |Dx′u− (Dx′u)Br |q dx
) 1
q

.
r

R

(
–

∫
BR

|Du|q dx
)1/q

.

Since it holds that (using (2.7))

|Du| .d,λ |U |+ |Dx′u|,
we conclude (2.8).

We are ready to prove the lemma. For any given θ = (θ1, . . . , θd) ∈ Rd, we
set

u0 = u0(x1) =
1

ā11

(
θ1 −

d∑
j=2

ā1jθj

)
.

A direct calculation shows that the function ue given by

ue = ue(x1, x
′) = u−

∫ x1

0

u0 dy1 −
d∑
i=2

θixi

satisfies L0ue = 0 in BR. Therefore, applying (2.8) to ue and using the fact
that

Ue = ā1jDjue = U − θ1, Diue = Diu− θi, i ∈ {2, . . . , d},
we have (

–

∫
Br

|U − (U)Br |q + |Dx′u− (Dx′u)Br |q dx
)1/q

.
r

R

(
–

∫
BR

|U − θ1|q + |Dx′u− θ′|q dx

)1/q

.

The lemma is proved. �
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The following lemma is used to obtain weak type-(1, 1) estimates.

Lemma 2.3. Let T be a bounded linear operator from L2(BR0)k to L2(BR0)k,
where R0 ≥ 4 and k ∈ {1, 2, . . .}. Suppose that there exist positive constants
µ < 1, c > 1, and C such that for any xo ∈ B1, 0 < r < µ, and

g ∈ L2(BR0
)k with

∫
BR0

g dx = 0, supp g ⊂ Br(xo) ∩B1,

we have

(2.9)

∫
B1\Bcr(xo)

|Tg| dx ≤ C
∫
Br(xo)∩B1

|g| dx.

Then the following hold true.

(a) For any f ∈ L2(BR0
)k with supp f ⊂ B1 and t > 0, we have∣∣{x ∈ B1 : |Tf(x)| > t}

∣∣ .d,k,µ,c,C 1

t

∫
B1

|f | dx.

(b) There exists a linear operator S from L1(B1)k to L1(B1)k such that for
any f ∈ L2(B1)k,

Sf = T f̄ in B1,

where f̄ is the zero extension of f on BR0
\ B1. Moreover, for any f ∈

L1(B1)k and t > 0, we have

(2.10)
∣∣{x ∈ B1 : |Sf(x)| > t}

∣∣ .d,k,µ,c,C 1

t

∫
B1

|f | dx.

In other words, T has an extension on the set

{f ∈ L1(BR0)k : suppf ⊂ B1}

to the weak L1(B1) space in such a way that for any t > 0, we have∣∣{x ∈ B1 : |Tf(x)| > t}
∣∣ .d,k,µ,c,C 1

t

∫
B1

|f | dx.

Proof. The assertion (a) follows by applying [8, Lemma 4.1] with L2(B1)k in
place of L2(Ω) to the operator S on L2(B1)k given by

Sf = T (fχB1)χB1 .

The assertion (b) is from [5, Lemma 3.3]. Indeed, for a given f ∈ L1(B1)k, one
can find a sequence {fn} ⊂ L2(B1)k such that ‖fn−f‖L1(B1) → 0 as n→∞.
Then by the assertion (a), the sequence {T (fnχB1

)} is Cauchy in measure
in B1 and its limit, denoted by Sf , is measurable in B1. By the hypothesis
of the lemma, S also satisfies (2.9) for g ∈ L1(B1)k with

∫
B1
g dx = 0 and

supp g ⊂ Br(xo) ∩ B1, and thus, by following the proof of [8, Lemma 4.1] we
see that S satisfies (2.10). �

We finish this subsection by establishing a weak type-(1, 1) estimate for Du.
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Lemma 2.4. If u ∈W 1,2
0 (B4) satisfies L0u = div f̃ in B4, where f̃ ∈ L2(B4)d

is supported in B1, then for any t > 0, we have

|{x ∈ B1 : |Du(x)| > t}| .d,λ
1

t

∫
B1

|f̃ | dx.

Proof. Consider a mapping f̃ 7→ f given by

f1 = (ā11)−1f̃1, fi = f̃i − āi1f1, i ∈ {2, . . . , d}.
We define a bounded linear operator T on L2(B4)d by setting Tf = Du, where

u ∈W 1,2
0 (B4) is a unique weak solution of

(2.11) L0u = div f̃ .

To prove the lemma, we only need to show that the operator T satisfies the
hypothesis of Lemma 2.3 with k = d, R0 = 4, µ = 1/2, c = 2, and C =
C(d, λ) > 0.

Fix xo ∈ B1 and r ∈ (0, 1/2). Let u ∈ W 1,2
0 (B4) satisfy (2.11) with f ∈

L2(B4)d satisfying

(2.12)

∫
B4

f dx = 0, suppf ⊂ Br(xo) ∩B1.

Note that (2.12) is the condition required in the hypothesis of Lemma 2.3, and

it is used to get (2.16) below. Then for any φ ∈W 1,2
0 (B4), it holds that

(2.13)

∫
B4

āijDjuDiφdx =

∫
B4

ā11f1D1φdx+

d∑
i=2

∫
B4

(fi + āi1f1)Diφdx.

Take R ∈ [2r, 2) so that B1 \ BR(xo) 6= ∅, and let g ∈ C∞o (B4)d be supported
in (B2R(xo) \BR(xo))∩B1. Then by the Lax-Milgram theorem, there exists a

unique v ∈W 1,2
0 (B4) satisfying

(2.14) L∗0v = div g in B4,

where L∗0 is the adjoint operator of L0; i.e., L∗0v = Di(ā
jiDjv). Moreover, by

the energy estimate we have

(2.15) ‖Dv‖L2(B4) .d,λ ‖g‖L2((B2R(xo)\BR(xo))∩B1).

By setting φ = v in (2.13) and testing (2.14) with u, we have the identity∫
B4

Du · g dx =

∫
B4

f1V dx+

d∑
i=2

∫
B4

fiDiv dx,

where V = āj1Djv. From this together with (2.12), it follows that∫
B4

Du · g dx =

∫
Br(xo)

f1

(
V − (V )Br(xo)

)
dx(2.16)

+

d∑
i=2

∫
Br(xo)

fi
(
Div − (Div)Br(xo)

)
dx.



1518 J. CHOI, S. KIM, AND K. LEE

On the other hand, since v satisfies L∗0v = 0 in BR(xo), (2.2) implies

[V ]C0,1(Br(xo)) + [Dx′v]C0,1(Br(xo)) . R
−d/2−1‖Dv‖L2(BR(xo))

. R−d/2−1‖g‖L2((B2R(xo)\BR(xo))∩B1),

where we used (2.15) in the second inequality. Combining these together,∣∣∣∣ ∫
(B2R(xo)\BR(xo))∩B1

Du · g dx
∣∣∣∣

. rR−d/2−1‖f‖L1(Br(xo))‖g‖L2((B2R(xo)\BR(xo))∩B1).

Thus by the duality and Hölder’s inequality, we have∫
(B2R(xo)\BR(xo))∩B1

|Du| dx . rR−1‖f‖L1(Br(xo)).

For i ∈ {1, . . . , N − 1}, where N is the smallest positive integer such that
B1 ⊂ B2Nr(xo), we set R = 2ir. Then we obtain∫

B1\B2r(xo)

|Du| dx .
N−1∑
i=1

2−i‖f‖L1(Br(xo)) . ‖f‖L1(Br(xo)),

which implies that the operator T satisfies the hypothesis of Lemma 2.3. The
lemma is proved. �

2.2. Proof of Theorem 1.2

In this subsection, we assume that the hypotheses in Theorem 1.2 hold. We
shall derive a priori estimates for u under the assumption that the coefficient
A and data f are sufficiently smooth so that u ∈ C1(B4). Then the general

case follows from an approximation argument (see [7, pp. 134–135]) and W 1,p
0 -

solvability of elliptic equations (see Theorem 3.4).
Throughout the proof, we shall denote

U = (Û ,Dx′u), where Û = a1jDju− f1

and define

Φ(xo, r) := inf
θ∈Rd

(
–

∫
Br(xo)

|U − θ| 12 dx

)2

,

To prove Theorem 1.2, we will use the following decay estimate for Φ(xo, r).

Lemma 2.5. Let xo ∈ B3, r ∈ (0, 1
4 ], and γ ∈ (0, 1). Then, for any ρ ∈ (0, r],

we have

Φ(xo, ρ) .d,λ,γ

(
ρ

r

)γ
Φ(xo, r) + ‖Du‖L∞(Br(xo)) ω̃A,B3(ρ) + ω̃f ,B3(ρ),

where ω̃•,B3
is a function derived from • as formulated in (2.20); see Re-

mark 2.6.
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Proof. Let xo = (xo1, x
′
o) ∈ B3 and r ∈ (0, 1

4 ]. Let the function ue be given by

ue = u−
∫ x1

0

f̄1(y1)

ā11(y1)
dy1, where ḡ(x1) := –

∫
B′r(x′o)

g(x1, y
′) dy′.

We set Ā = Ā(x1) and note that

div(ĀDue) = div(ĀDu)−D1f1 = div(ĀDu)− div f̄

and thus by setting F := (Ā−A)Du+ f − f̄ , we have

div(ĀDue) = divF in B6.

We decompose ue = w+v, where w ∈W 1,2
0 (B4r(xo)) is a unique weak solution

of
div(ĀDw) = div(χBr(xo)F ) in B4r(xo).

Here, χBr(xo) is the characteristic function. Then by applying Lemma 2.4 with
scaling and translation, we have

|{x ∈ Br(xo) : |Dw(x)| > t}| .d,λ
1

t

∫
Br(xo)

|F | dx

for any t > 0. This implies that (c.f. [13, Eq. (2.11)])

(2.17)

(
–

∫
Br(xo)

|Dw| 12 dx

)2

. –

∫
Br(xo)

|F | dx.

For the estimate of v, we apply Lemma 2.2 to the fact that

div(ĀDv) = 0 in Br(xo)

to get for any θ = (θ1, θ
′) ∈ Rd that(

–

∫
Bκr(xo)

|V − (V )Bκr(xo)|
1
2 + |Dx′v − (Dx′v)Bκr(xo)|

1
2 dx

)2

(2.18)

. κ

(
–

∫
Br(xo)

|V − θ1|
1
2 + |Dx′v − θ′|

1
2 dx

)2

for any κ ∈ (0, 1
2 ], where V := ā1jDjv.

Now we set Ue = ā1jDjue, and observe that

(2.19) Dx′ue = Dx′u, Û − Ue =
(
a1j − ā1j

)
Dju− (f1 − f̄1).

By (2.17), (2.18), and ue = w + v, we have(
–

∫
Bκr(xo)

|Ue − (V )Bκr(xo)|
1
2 + |Dx′ue − (Dx′ue)Bκr(xo)|

1
2 dx

)2

. κ

(
–

∫
Br(xo)

|V − θ1|
1
2 + |Dx′v − θ′|

1
2 dx

)2

+ κ−2d –

∫
Br(xo)

|F | dx

. κ

(
–

∫
Br(xo)

|Ue − θ1|
1
2 + |Dx′ue − θ′|

1
2 dx

)2

+ κ−2d –

∫
Br(xo)

|F | dx.
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From this together with (2.19), it follows that

Φ(xo, κr) ≤ C0

(
κΦ(xo, r) + κ−2d‖Du‖L∞(Br(xo))ωA,B3

(r) + κ−2dωf ,B3
(r)
)
,

where C0 = C0(d, λ) is an absolute constant,

ωA,B3
(r) := sup

x∈B3

–

∫
Br(x)

∣∣∣∣∣A(y)− –

∫
B′r(x′)

A(y1, z
′) dz′

∣∣∣∣∣ dy,
and ωf ,B3

(r) is defined in the same way.
We fix a κ = κ(d, λ, γ) ∈ (0, 1

2 ] so that C0κ
1−γ ≤ 1. Then, we have

Φ(xo, κr) ≤ κγΦ(xo, r) + C
(
‖Du‖L∞(Br(xo))ωA,B3

(r) + ωf ,B3
(r)
)
,

where C = C(d, λ, γ). Let the function ω̃•,B3
be given by

(2.20) ω̃•,B3
(r) :=

∞∑
i=1

κγi
(
ω•,B3

(κ−ir)[κ−ir < 1] + ω•,B3
(1)[κ−ir ≥ 1]

)
,

where we used Iverson bracket notation, i.e., [P ] = 1 if P is true and [P ] = 0
otherwise. By iterating and using the fact that

j∑
i=1

κγ(i−1)ω•,B3
(κj−ir) ≤ κ−γω̃•,B3

(κjr),

we obtain

(2.21)
Φ(xo, κ

jr)

≤ κγjΦ(xo, r) + C
(
‖Du‖L∞(Br(xo))ω̃A,B3

(κjr) + ω̃f ,B3
(κjr)

)
.

We note that the above inequality also obviously holds for j = 0 so that it
holds for all j = 0, 1, 2, . . .. Now, for 0 < ρ ≤ r, let j be the nonnegative
integer satisfying κj+1 < ρ/r ≤ κj . Then by (2.21) with ρ in place of κjr, we
get

Φ(xo, ρ)

≤ κ−γ
(ρ
r

)γ
Φ(xo, κ

−jρ) + C
(
‖Du‖L∞(Bκ−jρ(xo))ω̃A,B3(ρ) + ω̃f ,B3(ρ)

)
≤ κ−γ−2d

(ρ
r

)γ
Φ(xo, r) + C

(
‖Du‖L∞(Br(xo))ω̃A,B3

(ρ) + ω̃f ,B3
(ρ)
)
,

where, we used that Φ(xo, κ
−jρ) ≤ κ−2dΦ(xo, r). The lemma is proved. �

Remark 2.6. We note that the functions ω̃A,B3
and ω̃f ,B3

in Lemma 2.5 satisfy

∞∑
j=0

ω̃•,B3
(2−jr) .

∫ r

0

ω̃•(t)

t
dt <∞,

where we set

ω̃•(r) :=

∞∑
i=1

κγi
(
ω•(κ

−ir)[κ−ir < 1] + ω•(1)[κ−ir ≥ 1]
)
.
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We refer to [5, Lemma 8.1] for the proof.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let θxo,r ∈ Rd be chosen so that

Φ(xo, r) =

(
–

∫
Br(xo)

|U − θxo,r|
1
2 dx

)2

.

First, we derive L∞-estimate for Du. Let xo ∈ B3 and r ∈ (0, 1
4 ]. Recall that

we assume A and f are sufficiently smooth so that u ∈ C1(B4). Note that
Lemma 2.5 particularly implies limi→∞Φ(xo, 2

−ir) = 0 and thus, we have

(2.22) lim
i→∞

θxo,2−ir = U(xo).

By averaging the obvious inequality∣∣θxo, 12 r − θxo,r∣∣ 12 . ∣∣U − θxo, 12 r∣∣ 12 + |U − θxo,r|
1
2

on B 1
2 r

(xo) and taking the square, we have∣∣θxo, 12 r − θxo,r∣∣ .d,λ,γ Φ(xo,
1
2r) + Φ(xo, r).

We apply the above inequality iteratively and use (2.22) to get

(2.23) |U(xo)− θxo,r| .
∞∑
j=0

Φ(xo, 2
−jr).

Averaging the inequality |θxo,r|
1
2 . |U − θxo,r|

1
2 + |U | 12 on Br(xo) and taking

the square, we obtain

|θxo,r| . Φ(xo, r) + r−d‖U‖L1(Br(xo)) . r
−d‖U‖L1(Br(xo)),

Using the above inequality together with Lemma 2.5, Remark 2.6, and (2.23),
we see that

(2.24)

|U(xo)| . r−d‖U‖L1(Br(xo))

+ ‖Du‖L∞(Br(xo))

∫ r

0

ω̃A(t)

t
dt+

∫ r

0

ω̃f (t)

t
dt.

From the definition of Û , we have

D1u =
1

a11

Û − d∑
j=2

a1jDju+ f1

 ,

which implies

(2.25) |Du| ≤ |D1u|+ |Dx′u| .d,λ |U |+ |f1|,
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and thus, we obtain by (2.24) that

|U(xo)| ≤ C0r
−d‖U‖L1(Br(xo)) + C0‖U‖L∞(Br(xo))

∫ r

0

ω̃A(t)

t
dt

+ C0‖f1‖L∞(Br(xo))

∫ r

0

ω̃A(t)

t
dt+ C0

∫ r

0

ω̃f (t)

t
dt,

where C0 = C0(d, λ, γ). Choose r0 ∈ (0, 1
4 ] so that

(2.26) C0

∫ r0

0

ω̃A(t)

t
dt ≤ 1

3d
.

Then for any xo ∈ B3 and r ∈ (0, r0], we have

(2.27)

|U(xo)| ≤ C0r
−d‖U‖L1(Br(xo)) + 3−d‖U‖L∞(Br(xo))

+ 3−d‖f1‖L∞(Br(xo)) + C0

∫ r

0

ω̃f (t)

t
dt.

Here, the constant r0 depends only on d, λ, γ, and ωA.
For k ∈ {1, 2, . . .}, we set rk = 3−21−k. Then it holds that B2−k(xo) ⊂ Brk+1

for any xo ∈ Brk . We take k0 sufficiently large such that 2−k0 ≤ r0. Then for
k ≥ k0, it follows from (2.27) with r = 2−k that

‖U‖L∞(Brk ) ≤ C02dk‖U‖L1(B6) + 3−d‖U‖L∞(Brk+1
)

+ 3−d‖f1‖L∞(B6) + C0

∫ 1

0

ω̃f (t)

t
dt.

Multiplying both sides of the above inequality by 3−dk and summing the terms
with respect to k = k0, k0 + 1, . . . , we have

∞∑
k=k0

3−dk‖U‖L∞(Brk ) ≤ C‖U‖L1(B6) +

∞∑
k=k0+1

3−dk‖U‖L∞(Brk )

+ C‖f1‖L∞(B6) + C

∫ 1

0

ω̃f (t)

t
dt,

where C = C(d, λ, γ). Since rk0 ≥ 2, we thus obtain

‖U‖L∞(B2) . ‖U‖L1(B6) + ‖f1‖L∞(B6) +

∫ 1

0

ω̃f (t)

t
dt.

Using this together with (2.25) and U . |Du| + |f1|, we get the following
L∞-estimate for Du:

(2.28) ‖Du‖L∞(B2) .d,λ,γ,ωA
‖Du‖L1(B6) + ‖f1‖L∞(B6) +

∫ 1

0

ω̃f (t)

t
dt.

Next, we estimate the modulus of continuity of U . Let x, y ∈ B1 with
ρ := 2|x− y| ∈

(
0, 1

4

]
. By quasi triangle inequalities, for z ∈ Bρ(x)∩Bρ(y), we

have

|U(x)−U(y)| 12 . |U(x)−θx,ρ|
1
2 +|U(y)−θy,ρ|

1
2 +|U(z)−θx,ρ|

1
2 +|U(z)−θy,ρ|

1
2 .
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By averaging over z ∈ Bρ(x) ∩ Bρ(y), taking the square, and using (2.23), we
obtain

|U(x)−U(y)| . sup
xo∈B1

|U(xo)− θxo,ρ|+ Φ(x, ρ) + Φ(y, ρ)

. sup
xo∈B1

∞∑
j=0

Φ(xo, 2
−jρ).

On the other hand, by Lemma 2.5 and Remark 2.6, we have for any xo ∈ B1,

∞∑
j=0

Φ(xo, 2
−jρ) . Φ(xo, ρ) + ‖Du‖L∞(B2)

∫ ρ

0

ω̃A(t)

t
dt+

∫ ρ

0

ω̃f (t)

t
dt

. ργΦ(xo,
1
4 ) + ‖Du‖L∞(B2)

∫ ρ

0

ω̃A(t)

t
dt+

∫ ρ

0

ω̃f (t)

t
dt.

By combining these together and using Φ(xo,
1
4 ) . ‖U‖L1(B6), we get

|U(x)−U(y)| . ργ‖U‖L1(B6) + ‖Du‖L∞(B2)

∫ ρ

0

ω̃A(t)

t
dt+

∫ ρ

0

ω̃f (t)

t
dt.

Therefore, we obtain by (2.28) that

|U(x)−U(y)|(2.29)

.d,λ,γ,ωA
|x− y|γ

(
‖Du‖L1(B6) + ‖f1‖L1(B6)

)
+

∫ 2|x−y|

0

ω̃f (t)

t
dt

+

(
‖Du‖L1(B6) + ‖f1‖L∞(B6) +

∫ 1

0

ω̃f (t)

t
dt

)∫ 2|x−y|

0

ω̃A(t)

t
dt

for any x, y ∈ B1 with |x− y| ≤ 1
8 . The theorem is proved. �

We close this subsection with a couple of remarks.

Remark 2.7. Note that in the above proof, if x, y ∈ B1 with |x− y| > 1
8 , then

by (2.28), we have

|U(x)−U(y)| ≤ 2‖U‖L∞(B1) . ‖Du‖L∞(B1) + ‖f1‖L∞(B1)

. |x− y|γ
(
‖Du‖L1(B6) + ‖f1‖L∞(B6) +

∫ 1

0

ω̃f (t)

t
dt

)
.

By combining it with (2.29), we have the following modulus of continuity esti-
mate:

|U(x)−U(y)| .d,λ,γ,ωA

∫ 2|x−y|

0

ω̃f (t)

t
dt(2.30)

+

(
‖Du‖L1(B6) + ‖f1‖L∞(B6) +

∫ 1

0

ω̃f (t)

t

)
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×

(
|x− y|γ +

∫ 2|x−y|

0

ω̃A(t)

t
dt

)
for any x, y ∈ B1.

Remark 2.8. For γ0 ∈ (0, 1), we define the partial Hölder semi-norm with
respect to x′ by

[g]Cγ0
x′ (Ω) = sup

x,y∈Ω
x1=y1,x

′ 6=y′

|g(x)− g(y)|
|x′ − y′|γ0

.

Note that if [g]Cγ0
x′ (B6) <∞ with γ0 ∈ (0, γ), then for any r ∈ (0, 1], we have

ω̃g,B4
(r) +

∫ r

0

ω̃g,B4
(t)

t
dt .γ0,γ,κ [g]Cγ0

x′ (B6)r
γ0 .

Therefore, by Remark 2.7, we recover the following partial Schauder estimate
for U := (Û ,Dx′u):

[U ]Cγ0 (B1) .d,λ,γ0,[A]
C
γ0
x′

(B6)
‖Du‖L1(B6) + ‖f1‖L∞(B6) + [f ]Cγ0

x′ (B6)

provided that [A]Cγ0
x′ (B6) + [f ]Cγ0

x′ (B6) <∞.

2.3. Proof of Theorem 1.5

In this subsection, we provide the proof and some related remarks of Theo-
rem 1.5.

Proof of Theorem 1.5. The proof is based on odd/even extension technique.
Set

ãij(x1, x
′) =

{
aij(|x1|, x′) for i = j = 1 or i, j ∈ {2, . . . , d},

sgn(x1)aij(|x1|, x′) otherwise,

f̃i(x1, x
′) =

{
fi(|x1|, x′) for i = 1,

sgn(x1)fi(|x1|, x′) otherwise,

ũ(x1, x
′) = sgn(x1)u(|x1|, x′).

Observe that ũ ∈W 1,p(B6) satisfies

div(ÃDu) = div f̃ in B6,

where Ã = (ãij)di,j=1 satisfies (1.2) with the same constant λ,

f̃ = (f̃1, . . . , f̃d) ∈ L∞(B6)× Lp(B6)d−1,

and Ã and f̃ are of partial Dini mean oscillation with respect to x′ in B4. Thus
by applying Theorem 1.2, we see that ũ ∈ W 1,∞(B1) and that ã1jDj ũ − f̃1

and Dx′ ũ are continuous in B1, which proves the theorem. Moreover, by using
(2.28), (2.30), and the fact that

ωÃ(r) ≤ 2ω+
A(r), ωf̃ (r) ≤ 2ω+

f (r) for r ∈ (0, 1],
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we have

(2.31) ‖Du‖L∞(B+
2 ) ≤ C

(
‖Du‖L1(B+

6 ) + ‖f1‖L∞(B+
6 ) +

∫ 1

0

ω̃+
f (t)

t
dt

)
and

|U(x)−U(y)| ≤ C

∫ 2|x−y|

0

ω̃+
f (t)

t
dt(2.32)

+ C

(
‖Du‖L1(B+

6 ) + ‖f1‖L∞(B+
6 ) +

∫ 1

0

ω̃+
f (t)

t

)

×

(
|x− y|γ +

∫ 2|x−y|

0

ω̃+
A(t)

t
dt

)
for any x, y ∈ B+

1 , where

U = (Û ,Dx′u), ω̃+
• (r) :=

∞∑
i=1

κγi
(
ω+
• (κ−ir)[κ−ir < 1] + ω+

• (1)[κ−ir ≥ 1]
)
,

and C is a constant depending only on d, λ, γ, and ωÃ. Here, one can replace

the parameter ωÃ by ω+
A, by taking r0 ∈

(
0, 1

4

]
so that

C0

∫ r0

0

ω̃Ã(t)

t
dt ≤ 2C0

∫ r0

0

ω̃+
A(t)

t
dt ≤ 1

3d

in (2.26). �

Remark 2.9. As demonstrated in Remark 2.8, we recover the following partial
Schauder estimate for U = (Û ,Dx′u):

[U ]Cγ0 (B+
1 ) .d,λ,γ0,[A]

C
γ0
x′

(B
+
6 )
‖Du‖L1(B+

6 ) + ‖f1‖L∞(B+
6 ) + [f ]Cγ0

x′ (B+
6 )

provided that [A]Cγ0
x′ (B+

6 ) + [f ]Cγ0
x′ (B+

6 ) <∞.

Remark 2.10. By using the extensions

ãij(x1, x
′) =

{
aij(|x1|, x′) for i = j = 1 or i, j ∈ {2, . . . , d},

sgn(x1)aij(|x1|, x′) otherwise,

f̃i(x1, x
′) =

{
sgn(x1)fi(|x1|, x′) for i = 1,

fi(|x1|, x′) otherwise,

ũ(x1, x
′) = u(|x1|, x′),

and following the steps in the proof of Theorem 1.5, one can obtain the same
estimates (2.31) and (2.32) for weak solutions to the equation with the conormal
derivative condition {

Lu = div f in B+
6 ,

aijDjuni = fini on B6 ∩ ∂Rd+,
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where n = (n1, . . . , nd) is the outward unit normal.

3. Applications

In this section, we give applications of our main theorems.

3.1. Weak type-(1, 1) estimate

In this subsection, we prove local weak type-(1, 1) estimates under the con-
dition that, for example, in the interior case,

(3.1) ωA(r) ≤ C0

(
ln
r

4

)−2

, ∀r ∈ (0, 1],

which is stronger than the partial Dini mean oscillation condition. Such a
condition on the L1-mean oscillation in all the directions was introduced in
[13, Section 3] for the interior weak type-(1, 1) estimates ofW 1,2-weak solutions.
See also [8] for boundary estimates and [19] for weighted estimates.

Theorem 3.1. (a) Let T0 be a bounded linear operator on L2(B6)d defined by

T0f = Du,

where u ∈W 1,2
0 (B6) is a unique weak solution of{

div(ADu) = div f in B6,

u = 0 on ∂B6.

If A satisfies (3.1), then T0 has an extension on the set

{f ∈ L1(B6)d : suppf ⊂ B1}
in such a way that for any t > 0, we have∣∣{x ∈ B1 : |T0f(x)| > t}

∣∣ ≤ C

t

∫
B1

|f | dx,

where C = C(d, λ, ωA, C0).
(b) Let T+

0 be a bounded linear operator on L2(B+
6 )d defined by

T+
0 f = Du,

where u ∈W 1,2
0 (B+

6 ) is a unique weak solution of{
div(ADu) = div f in B+

6 ,

u = 0 on ∂B+
6 .

If A satisfies (3.1) with ω+
A in place of ωA, then T+

0 has an extension on
the set

{f ∈ L1(B+
6 )d : suppf ⊂ B+

1 }
in such a way that for any t > 0, we have∣∣{x ∈ B+

1 : |T+
0 f(x)| > t}

∣∣ ≤ C

t

∫
B+

1

|f | dx,
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where C = C(d, λ, ω+
A, C0).

Proof. We first prove part (a). We denote by L∗ the adjoint operator, i.e.,

L∗u = div(ATDu), AT = (aji)di,j=1.

We note that AT is also of partial Dini mean oscillation with respect to x′ in
B4 satisfying ωAT = ωA. Moreover, it follows that (see [13, Eq. (3.5)])

ω̃AT(r) .d,λ,C0

(
ln
r

4

)−2

, ∀r ∈ (0, 1],

which implies

(3.2)

∫ r

0

ω̃AT(t)

t
dt .

(
ln

4

r

)−1

, ∀r ∈ (0, 1].

Consider a mapping f 7→ f̂ given by

f̂1 = (a11)−1f1, f̂i = fi − ai1f̂1, i ∈ {2, . . . , d}.

We define a bounded linear operator T on L2(B6)d by setting T f̂ := T0f .
It suffices to show that T satisfies the hypothesis of Lemma 2.3 with k = d,
R0 = 6, µ = 1

3 , c = 6, and C = C(d, λ, ωA, C0) > 0. Fix xo ∈ B1 and r ∈ (0, 1
3 ).

Let f̂ ∈ L2(B6)d be a function satisfying∫
B6

f̂ dx = 0 and supp f̂ ⊂ Br(xo) ∩B1.

Let T f̂ = Du, i.e., u ∈W 1,2
0 (B+

6 ) is a unique weak solution of

(3.3) div(ADu) = div f in B6.

Take R ∈ [6r, 2) so that B+
1 \BR(xo) 6= ∅, and let g ∈ C∞o (B6)d be a function

supported in (B2R(xo) \ BR(xo)) ∩ B1. By the Lax-Milgram theorem, there

exists a unique v ∈W 1,2
0 (B6) satisfying

(3.4) L∗v = div g in B6.

Set V := (aj1Djv,Dx′v). Since v satisfies L∗v = 0 in BR(xo), by a similar
calculation that lead to (2.30), we obtain

|V (x)− V (y)|

.d,λ,γ,ωA
R−d/2‖Dv‖L2(BR(xo))

((
|x− y|
R

)γ
+

∫ 2|x−y|

0

ω̃AT(t)

t
dt

)
for any x, y ∈ Br(xo) ⊂ BR/6(xo). From this together with (3.2), we get

‖V − (V )Br(xo)‖L∞(Br(xo))(3.5)

.d,λ,γ,ωA,C0
R−d/2‖Dv‖L2(BR(xo))

((
r

R

)γ
+

(
ln

1

r

)−1)
.
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Testing (3.3) and (3.4) with v and u, respectively, one can obtain that∫
(B2R(xo)\BR(xo))∩B1

Du · g dx =

∫
Br(xo)

f̂ ·
(
V − (V )Br(xo)

)
dx.

Thus by Hölder’s inequality, duality, (3.5), and the L2-estimate

‖Dv‖L2(B6) . ‖g‖L2((B2R(xo)\BR(xo))∩B1),

we have∫
(B2R(xo)\BR(xo))∩B1

|Du| dx . Rd/2
(∫

(B2R(xo)\BR(xo))∩B1

|Du|2 dx
)1/2

.

((
r

R

)γ
+

(
ln

1

r

)−1)
‖f̂‖L1(Br(xo)).

Let N be the smallest positive integer such that B1 ⊂ B2N ·3·r(xo). Then by
taking R = 2i ·3 ·r, i ∈ {1, . . . , N−1}, and using the fact that N−1 . ln(1/r),
we obtain∫
B+

1 \B6r(xo)

|Du| dx .
N−1∑
i=1

(
2−iγ + (ln(1/r))−1

)
‖f̂‖L1(B+

r (xo)) . ‖f̂‖L1(B+
r (xo)),

which implies that the operator T satisfies the hypothesis of Lemma 2.3.
To prove part (b) one may use a similar argument as above; see the proof

of [5, Theorem 5.6]. However, in this case, it is easier to directly extend the
operator T+

0 by

T+
0 f = T0f̃

∣∣
B+

1

on the set {f ∈ L1(B+
6 )d : suppf ⊂ B+

1 }, where T0 is the operator from part

(a) with Ã in place of A. Here, Ã and f̃ are odd or even extensions of A and f
as in the proof of Theorem 1.5. Then the extension is well-defined. Moreover,
since Ã also satisfies (3.1), by the result in part (a), we obtain the desired
estimate. The theorem is proved. �

3.2. Lp-estimates for W 1,1-weak solutions

In [2] (see also [1, Appendix]), Brezis proved W 1,p-regularity for W 1,1-weak
solutions to divergence form elliptic equations with Dini continuous coefficients.
This regularity result was extended in [13,19] to the equations with (piecewise)
Dini mean oscillation coefficients. We also refer the reader to [13, 18, 20] for
similar results on nondivergence type equations. The proofs in those papers are
based on duality and bootstrap arguments combined with regularity theories,
in particular, the boundedness of the gradient of solutions.

In the same manner, by using our results in Theorems 1.2 and 1.5, we prove
the following W 1,p-regularity for W 1,1-weak solutions when the coefficient A
is of partial Dini mean oscillation.

Theorem 3.2. Let p ∈ (1,∞).
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(a) Let u ∈W 1,1(B6) be a weak solution of

(3.6) div(ADu) = div f in B6,

where f ∈ Lp(B6)d. If A is of partial Dini mean oscillation with respect
to x′ in B4, then we have u ∈W 1,p(B1) with the estimate

‖u‖W 1,p(B1) ≤ C
(
‖u‖W 1,1(B6) + ‖f‖Lp(B6)

)
,

where C = C(d, λ, ωA, p).
(b) Let u ∈W 1,1(B+

6 ) be a weak solution of{
div(ADu) = div f in B+

6 ,

u = 0 on B6 ∩ Rd+,

where f ∈ Lp(B+
6 )d. If A is of partial Dini mean oscillation with respect

to x′ in B+
4 , then we have u ∈W 1,p(B+

1 ) with the estimate

‖u‖W 1,p(B+
1 ) ≤ C

(
‖u‖W 1,1(B+

6 ) + ‖f‖Lp(B+
6 )

)
,

where C = C(d, λ, ω+
A, p).

To prove Theorem 3.2, we utilize W 1,p-solvability result, which can be found
in, for instance, [10, Theorem 8.6], where the authors considered higher order
elliptic systems with lower order terms and leading coefficients which are par-
tially BMO in Reifenberg flat domain. For reader’s convenience, we state the
theorem on the second-order equations without lower order terms; see Theorem
3.4 below.

Assumption 3.3 (γ). There exists R0 ∈ (0, 1] such that the following hold.

(i) For xo ∈ Ω and 0 < R ≤ min{R0,dist(xo, ∂Ω)}, there exists a coordinate
system depending on xo and R such that in this new coordinate system,
we have that

(3.7) –

∫
BR(xo)

∣∣∣∣∣A(x1, y
′)− –

∫
B′R(x′o)

A(x1, y
′) dy′

∣∣∣∣∣ dx ≤ γ
(ii) For any xo ∈ ∂Ω and 0 < R ≤ R0, there is a coordinate system depending

on xo and R such that in the new coordinate system we have that (3.7)
holds, and

{y : xo1 + γR < y1} ∩BR(xo) ⊂ ΩR(xo) ⊂ {y : xo1 − γR < y1} ∩BR(xo),

where xo1 is the first coordinate of xo in the new coordinate system.

Theorem 3.4. Let Ω be a bounded domain in Rd and p ∈ (1,∞). Then there
exists a constant γ = γ(d, λ, p) > 0 such that, under Assumption 3.3 (γ), the

following holds: for f ∈ Lp(Ω)d, there exists a unique u ∈W 1,p
0 (Ω) satisfying

div(ADu) = div f in Ω

and
‖Du‖Lp(Ω) .d,λ,p,R0,|Ω| ‖f‖Lp(Ω).
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We are ready to prove Theorem 3.2.

Proof of Theorem 3.2. We only prove the first assertion because the second is
an easy consequence of the extension technique as in the proof of Theorem 1.5.
Let η be a smooth function in Rd satisfying

0 ≤ η ≤ 1, η ≡ 1 on B5/2, supp η ⊂ B3, |Dη| .d 1.

We define operators L̃ and L̃∗ by

L̃u = div(ÃDu), L̃∗u = div(ÃTDu),

where Ã = ηA + λ(1 − η)I. Here, λ is the ellipticity constant from (1.2) and

I is the d× d identity matrix. Then one can check that Ã satisfies the strong
ellipticity condition (1.2), and that

ωÃ(r) .d,λ ω
+
A(r) + r.

Thus by [5, Lemma 8.1 (c)], for any γ > 0, there exists

k0 = k0(d, ωÃ, γ) = k0(d, λ, ωA, γ) ∈ (0, 1)

such that

sup
r∈(0,k0)

ωÃ(r) < γ.

From this we see that the following holds:

• For any γ > 0, there exists R0 ∈ (0, 1], depending only on d, λ, ωA,

and γ, such that Ã and Ω = B6 satisfy Assumption 3.3 (γ).

Obviously, the same results hold for ÃT. Therefore, Theorem 3.4 is available
for L̃ and L̃∗ in Ω = B6.

Now let u ∈ W 1,1(B6) be a weak solution of (3.6) with f ∈ Lp(B6)d. Then
for any φ ∈ C∞o (B6), by testing (3.6) with ηφ, we have

(3.8)

∫
B6

ÃDu ·Dφdx = λ

∫
B6

(1− η)Du ·Dφdx

−
∫
B6

ADu ·Dηφdx+

∫
B+

6

f ·D(ηφ) dx.

We consider the following two cases:

1 < p <
d

d− 1
,

d

d− 1
≤ p <∞.

i. 1 < p < d
d−1 : Set p′ = p

p−1 > d, and let ψ ∈ C∞o (B6)d with suppψ ⊂ B2.

By Theorem 3.4, there exists a unique v ∈W 1,p′

0 (B6) satisfying

(3.9) L̃∗v = divψ in B6

and

(3.10) ‖Dv‖Lp′ (B6) ≤ C‖ψ‖Lp′ (B2),
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where C = C(d, λ, p′, R0) = C(d, λ, ωA, p). Since ÃT is of partial Dini
mean oscillation, by using Theorem 1.2 with scaling and covering argument,
we see that Dv is bounded in B3. Thus, as a test function to (3.9), we can

apply ζu ∈W 1,1
0 (B5/2), where ζ is a smooth function satisfying

0 ≤ ζ ≤ 1, ζ ≡ 1 in B2, supp ζ ⊂ B5/2, |Dζ| .d 1.

By testing (3.9) with ζu and setting φ = ζv in (3.8), we have∫
B6

D(ζu) ·ψ dx =

∫
B6

uÃDζ ·Dv − vÃDu ·Dζ dx+

∫
B6

f ·D(ζv) dx.

Since ψ are supported in B2 and ζ ≡ 1 in B2, the left-hand side of the
above identity is equal to ∫

B2

Du ·ψ dx.

Hence by using Hölder’s inequality, the Sobolev inequality, and (3.10), we
get ∣∣∣∣∫

B2

Du ·ψ dx
∣∣∣∣ . (‖u‖W 1,1(B5/2) + ‖f‖Lp(B5/2)

)
‖ψ‖Lp′ (B2).

Therefore, by duality and the Sobolev inequality, we have

(3.11) ‖u‖W 1,p(B2) . ‖u‖W 1,1(B5/2) + ‖f‖Lp(B5/2).

ii. d
d−1 ≤ p < ∞: Following the same argument used deriving (3.11), for

1 ≤ r ≤ R ≤ 2 and d
d−1 ≤ q <∞, we see that

(3.12) ‖u‖W 1,q(Br) ≤ C
(
‖u‖W 1,q∗ (BR) + ‖f‖Lq(BR)

)
,

where C = C(d, λ, ωA, q, r, R) provided that u ∈ W 1,q∗(BR). Here, q∗ is

any number in (1, q) if q = d
d−1 and q∗ = dq

d+q if q > d
d−1 . Let k be the

smallest positive integer such that

k >
dp− p− d

p
.

We set

pi =
dp

d+ pi
, ri = 1 +

i

k
, i ∈ {0, 1, . . . , k}.

By applying (3.12) iteratively, we have

‖u‖W 1,p(B1) . ‖u‖W 1,pk (B2) + ‖f‖Lp(B2).

Since pk <
d
d−1 , using (3.11) with p = pk, we get the desired estimate.

The theorem is proved. �
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