East Asian Math. J.
Vol. 40 (2024), No. 3, pp. 295-306
YNMS
http://dx.doi.org/10.7858/eamj.2024.019

MULTIPLICITY OF POSITIVE SOLUTIONS OF A SCHRÖDINGER-TYPE ELLIPTIC EQUATION

Eunkyung Ko

Abstract. We investigate the existence of multiple positive solutions of the following elliptic equation with a Schrödinger-type term:

$$
\left\{\begin{aligned}
-\Delta u+V(x) u & =\lambda f(u) & & x \in \Omega, \\
u & =0, & & x \in \partial \Omega,
\end{aligned}\right.
$$

where $0 \in \Omega$ is a bounded domain in $\mathbb{R}^{N}, N \geq 1$, with a smooth boundary $\partial \Omega, f \in C[0, \infty), V \in L^{\infty}(\Omega)$ and λ is a positive parameter. In particular, when $f(s)>0$ for $0 \leq s<\sigma$ and $f(s)<0$ for $s>\sigma$, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.

1. Introduction

We are concerned with positive solutions of the Schrödinger-type elliptic equation

$$
\left(P_{\lambda}\right) \quad\left\{\begin{aligned}
-\Delta u+V(x) u & =\lambda f(u), & & x \in \Omega, \\
u & =0, & & x \in \partial \Omega,
\end{aligned}\right.
$$

where $0 \in \Omega$ is a bounded domain in $\mathbb{R}^{N}, N \geq 1, V \in L^{\infty}(\Omega), f \in C([0, \infty))$ and λ is a positive parameter. We assume that the reaction term f and Schrödinger term V satisfy the following conditions,, respectively.
(H1) There exists $\sigma>0$ such that $f(s)>0$ for $0 \leq s<\sigma$ and $f(s)<0$ for $s>\sigma$.
(H2) There exists $c_{V}>0$ such that $V(x) \geq-c_{V}>-\frac{1}{\|e\|_{\infty}}$ for $x \in \Omega$, when e is the positive solution of

$$
\left\{\begin{array}{l}
-\Delta e=1, \text { in } \Omega \\
e=0, \text { on } \partial \Omega
\end{array}\right.
$$

[^0]The first equation in $\left(P_{\lambda}\right)$ is derived from the nonlinear Schrödinger equation (details in [15]). Nonlinear Schrödinger equations have been studied widely to demonstrate the existence of solutions which act on V in the whole space \mathbb{R}^{N} (see [2], [10] and [13]) or on bounded domains (see [8]).

In the case when $V \equiv 0$, investigation of existence of multiple positive solutions of $\left(P_{\lambda}\right)$ has a rich history for a long time (see [3], [5], [11], [12] and [16] and references therein). In this paper, when $V \in L^{\infty}(\Omega)$ satisfies (H2), by using the method of sub and supersolutions, we establish the existence of positive solutions of $\left(P_{\lambda}\right)$ for each $\lambda>0$. Further, under the assumption (H3) of f and V, we prove the existence of multiple positive solutions of $\left(P_{\lambda}\right)$ for a certain range of λ.

We first state our existence result:
Theorem 1.1. Assume (H1) and (H2). Then the problem $\left(P_{\lambda}\right)$ has a positive solution for each $\lambda>0$.

Remark 1. Theorem 1.1 assures that there exists a positive solution of $\left(P_{\lambda}\right)$ for each $\lambda>0$ even when V is negative in Ω. In the case when $\Omega=(0,1)$ and $V(x) \equiv-\mu$ with $\mu>0$ in $(0,1)$, the one dimensional problem of $\left(P_{\lambda}\right)$ is written as

$$
\left\{\begin{align*}
-u^{\prime \prime}(x) & =\lambda f(u(x))+\mu u(x), \quad x \in(0,1) \tag{1}\\
u(0)=0 & =u(1)
\end{align*}\right.
$$

Here, we emphasize that (1) has a positive solution for each $\lambda>0$, especially $\lambda>0$ very small, if $0<\mu<c_{V}$. Now, considering the case when $\lambda=0$, the above equation is corresponding to the following eigenvalue problem

$$
\left\{\begin{align*}
-u^{\prime \prime}(x) & =\mu u(x), \quad x \in(0,1), \tag{2}\\
u(0)=0 & =u(1) .
\end{align*}\right.
$$

Observing the well-known result that (2) does not allow a positive solution for μ satisfying $0<\mu<\sqrt{\pi}$, we might anticipate that when $\lambda \approx 0$, the problem (1) might have no positive solution for a very small $\mu>0$ since the neglectable term $\lambda f(u)$ is added in the first equation in (2). However, from Theorem 1.1 we can see that for each $\mu \in\left(0, \min \left\{\sqrt{\pi}, c_{V}\right\}\right)$ the problem (2) has a positive solution even for $\lambda \approx 0$.

Next, to state the multiplicity result, we let

$$
A=\frac{(N+1)^{N+1}}{N^{N}} \text { and } B=\frac{R^{2}}{A N+\|V\|_{\infty} R^{2}},
$$

where R is the radius of the largest inscribed ball B_{R} in Ω, and $K>0$ be a constant such that

$$
\begin{equation*}
\frac{1}{K} \leq 1-c_{V}\|e\|_{\infty} \tag{3}
\end{equation*}
$$

We define $f^{*}(s):=\max _{t \in[0, s]} f(t)$ and for any $0<a<d<b$,

$$
Q(a, d, b):=\frac{\frac{d}{f(d)} \frac{1}{B}}{\min \left\{\frac{a}{f^{*}(a)} \frac{1}{K\|e\|_{\infty}}, \frac{2 b}{f(d) A B}\right\}} .
$$

We further assume that
$(H 3)$ there exist a, b and d with $0<a<d<b$ such that $Q(a, d, b)<1$ and

$$
\tilde{f}(s):=f(s)-\frac{f(d)}{d} B\|V\|_{\infty} s>0, \forall s \in[0, b]
$$

and is nondecreasing on $[a, b]$.
Theorem 1.2. Assume $(H 1),(H 2)$ and (H3). Then the problem $\left(P_{\lambda}\right)$ has at least three positive solutions $u_{\lambda} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ for each $\lambda_{*}<\lambda<\lambda^{*}$, where

$$
\lambda_{*}=\frac{d}{f(d)} \frac{1}{B}, \lambda^{*}=\min \left\{\frac{a}{f^{*}(a)} \frac{1}{K\|e\|_{\infty}}, \frac{2 b}{f(d) A B}\right\} .
$$

Figure 1. S-shaped bifurcation diagram showing the existence of multiple positive solutions for $\left(P_{\lambda}\right)$

Remark 2. The condition $Q(a, d, b)=\frac{\frac{d}{f(d)} \frac{1}{B}}{\min \left\{\frac{a}{f^{*}(a)} \frac{1}{K\|e\| \infty}, \frac{2 b}{f(d) A B}\right\}}<1$ implies $\lambda_{*}<$ λ^{*}. This shows that there exists a nonempty interval of λ in which the problem $\left(P_{\lambda}\right)$ has at least three positive solutions.

In order to establish the existence of multiple positive solutions of $\left(P_{\lambda}\right)$, we employ three solution theorem ([1] and [17]). The typical way constructing a second subsolution of $\left(P_{\lambda}\right)$ when $V \equiv 0$ is not applicable since $V(x)$ acts on u. To obtain three positive solutions for a certain range of λ, it is important to construct two pairs of sub and supersolutions $\left(\psi_{1}, Z_{1}\right),\left(\psi_{2}, Z_{2}\right)$ of $\left(P_{\lambda}\right)$ with the property that $\psi_{1} \leq \psi_{2} \leq Z_{1}, \psi_{1} \leq Z_{2} \leq Z_{1}$ such that $\psi_{2} \not \leq Z_{2}$ so that three solution results in [1] can be applied. However, the term $V(x)$ acting on u gives a nontrivial difficulty in the construction of the second pair of sub and
supersolution $\left(\psi_{2}, Z_{2}\right)$. We overcome this difficulty by following the arguments used in [11] and [16], to an associated problem: $-\Delta u=\lambda \tilde{f}(u) ; \Omega, u=0 ; \partial \Omega$, where $\tilde{f}(s)=f(s)-\frac{f(d)}{d} B\|V\|_{\infty} s$. To the best our knowledge, when $V \in L^{\infty}(\Omega)$, the existence and multiplicity of positive solutions of $\left(P_{\lambda}\right)$ have not been treated.

The text is organized as follows: In Section 2, we analyze in detail the phosphorous cycling model which is applicable to our results. In Section 3, we recall a method of sub and supersolutions for $\left(P_{\lambda}\right)$ and a three solution theorem for the problem $\left(P_{\lambda}\right)$. Section 4 is devoted to the proofs of Theorem 1.1 and Theorem 1.2 .

2. Example : A phosphorous cycling model

A simple model satisfying the conclusions of Theorem 1.1 and Theorem 1.2 is the problem $\left(P_{\lambda}\right)$ when $f(u)=\tau-u+c \frac{u^{4}}{1+u^{4}}$ with $c \gg 1$, namely,

$$
\left\{\begin{align*}
-\Delta u+V(x) u & =\lambda\left(\tau-u+c \frac{u^{4}}{1+u^{4}}\right), & & x \in \Omega \tag{4}\\
u & =0, & & x \in \partial \Omega .
\end{align*}\right.
$$

This model describes phosphorous cycling in stratified lake and the colonization of barren soils in drylands by vegetation. It also describes the colonization of barren soils in drylands by vegetation (more details in [5] and [6]). We recall some results from [5] that for large c there exist some values of τ for which f satisfies ($H 1$).
Proposition 2.1. ([5]) If $c>\frac{16}{5 \sqrt[4]{135}}=$: c_{0}, then there exist $0<m<M<\infty$ such that $f^{\prime}(m)=f^{\prime}(M)=0$.
Proposition 2.2. ([5]) If $\tau>\frac{3}{4} \sqrt[4]{\frac{3}{5}}-\frac{1}{4}\left(\sqrt[4]{\frac{3}{5}}\right)^{5}=: \tau_{0}$, then there exists a unique $\sigma>0$ such that $f(\sigma)=0$.

Hence, for $\tau>\tau_{0}$ and c large, $f(s)$ satisfies (H1) (see the shape of the graph f given in Figure 2).

Figure 2. Graph of $f(s)$ satisfies (H1) for $c>c_{0}$ and $\tau>\tau_{0}$.

Proposition 2.3. ([5]) If $\tau<\frac{9}{16} c$, then $\frac{s}{f(s)}$ has the shape given in Figure 3.

Figure 3. Graph of $s / f(s)$ has a decreasing interval.
Now for each $c>c_{0}$ we let $\tau \in\left(\tau_{0}, \frac{9 c}{16}\right)$ be arbitrary fixed and choose $\alpha \in$ $(0, M)$ such that $f(\alpha)=f^{*}(\alpha)=f(0)$ (see Figure 4). We recall again the following additional results from [5].
Proposition 2.4. ([5]) For $c \gg 1$,
(1) $\sqrt[5]{c}<M<\sqrt[4]{c}$
(2) $\frac{1}{\sqrt[3]{c}}<\alpha<\frac{1}{\sqrt[4]{c}}$.

Figure 4. Graph of $f^{*}(s):=\max _{t \in[0, s]} f(t)$
Here, we verify that $f(u)=\tau-u+c \frac{u^{4}}{1+u^{4}}$ satisfies the conclusions of Theorem 1.2 , which means that there exist the values of c and τ satisfying all assumptions in Theorem 1.2. First, let us take $d=\sqrt[8]{c}$. Observing the calculation

$$
\begin{aligned}
\tilde{f}^{\prime}(s)=f^{\prime}(s)-\frac{f(\sqrt[8]{c})}{\sqrt[8]{c}} B\|V\|_{\infty} & =-1+c \frac{4 s^{3}}{\left(1+s^{4}\right)^{2}}-\frac{\tau-\sqrt[8]{c}+\frac{c \sqrt{c}}{1+\sqrt{c}}}{\sqrt[8]{c}} B\|V\|_{\infty} \\
& =c\left[\frac{4 s^{3}}{\left(1+s^{4}\right)^{2}}-\frac{1}{c}-\frac{\tau-\sqrt[8]{c}+\frac{c \sqrt{c}}{1+\sqrt{c}}}{c \sqrt[8]{c}} B\|V\|_{\infty}\right]
\end{aligned}
$$

it is easy to see that $\tilde{f}^{\prime}(s) \rightarrow \infty$ for all $s \in(0, \infty)$ as $c \rightarrow \infty$. Hence, there exists $c_{1}>0$ large enough such that $\tilde{f}^{\prime}(s)>0$ in $\left[\frac{1}{\sqrt[4]{c}}, \sqrt[5]{c}\right]$ for all $c \geq c_{1}$. Further, since

$$
\tilde{Q}\left(\frac{1}{\sqrt[4]{c}}, \sqrt[8]{c}\right):=\frac{\frac{1}{\sqrt[4]{c}}}{f\left(\frac{1}{\sqrt[4]{c}}\right)} / \frac{\sqrt[8]{c}}{f(\sqrt[8]{c})}=\frac{\tau c^{-\frac{3}{8}}-c^{-\frac{1}{4}}+\frac{c^{\frac{9}{8}}}{1+\sqrt{c}}}{\tau-\frac{1}{\sqrt[4]{c}}+\frac{c}{1+c}} \rightarrow \infty \text { as } c \rightarrow \infty
$$

there exists $c_{2}>0$ sufficiently large such that $\tilde{Q}\left(\frac{1}{\sqrt[4]{c}}, \sqrt[8]{c}\right)>\frac{K\|e\| \|_{\infty}}{B}$ for all $c>c_{2}$. Since $\alpha<\frac{1}{\sqrt[4]{c}}$ by Proposition 2.4, we have $f^{*}\left(\frac{1}{\sqrt[4]{c}}\right)=f\left(\frac{1}{\sqrt[4]{c}}\right)$, which implies that

$$
\begin{equation*}
\frac{\sqrt[8]{c}}{f(\sqrt[8]{c})} \frac{1}{B} / \frac{\frac{1}{\sqrt[4]{c}}}{f^{*}\left(\frac{1}{\sqrt[4]{c}}\right)} \frac{1}{K\|e\|_{\infty}}<1 \tag{5}
\end{equation*}
$$

for all $c>c_{2}$. It also follows that there exists $c_{3}>0$ such that $\sqrt[8]{c}<\frac{2}{A} \sqrt[5]{c}$ for all $c>c_{3}$, and we obtain

$$
\begin{equation*}
\frac{\sqrt[8]{c}}{f(\sqrt[8]{c})} \frac{1}{B} / \frac{2 \sqrt[5]{c}}{f(\sqrt[8]{c}) A B}<1 \tag{6}
\end{equation*}
$$

for all $c>c_{3}$. Hence, by (5) and (6), we show that $Q\left(\frac{1}{\sqrt[4]{c}}, \sqrt[8]{c}, \sqrt[5]{c}\right)<1$ for all $c \geq \max \left\{c_{2}, c_{3}\right\}$. Now, letting $c^{*}=\max \left\{c_{1}, c_{2}, c_{3}\right\}$ and choosing

$$
a=\frac{1}{\sqrt[4]{c^{*}}}, d=\sqrt[8]{c^{*}} \text { and } b=\sqrt[5]{c^{*}}
$$

we have $\tilde{f}^{\prime}(s) \geq 0$ in $[a, b], Q(a, d, b)<1$ and $\tilde{f}(s)>0$ in $[0, b]$ for a sufficiently small value of $\|V\|_{\infty}$.

3. Preliminaries

In this section, we define a subsolution and supersoluton of $\left(P_{\lambda}\right)$ and recall the method of obtaining sub and supersolutions and three solution theorem for $\left(P_{\lambda}\right)$.

A subsolution of $\left(P_{\lambda}\right)$ is defined as a function $\psi \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfying

$$
\begin{cases}-\Delta \psi+V(x) \psi \leq \lambda f(\psi), & x \in \Omega \tag{7}\\ \psi \leq 0, & x \in \partial \Omega\end{cases}
$$

while a supersolution of $\left(P_{\lambda}\right)$ is defined as a function $Z \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfying

$$
\begin{cases}-\Delta Z+V(x) Z \geq \lambda f(Z), & x \in \Omega \tag{8}\\ Z \geq 0, & x \in \partial \Omega\end{cases}
$$

Now we introduce the theorem of sub and supersolution and three solution theorem.

Lemma 3.1. (Theorem for sub and supersolution in [1]). If a subsolution ψ and a supersolution Z of $\left(P_{\lambda}\right)$ exist such that $\psi \leq Z$ on Ω, then $\left(P_{\lambda}\right)$ has at least one solution $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfying $\psi \leq u \leq Z$ on Ω.

Lemma 3.2. (Three solution Theorem in [1] and [17]). Suppose there exists two pairs of ordered sub and supersolutions $\left(\psi_{1}, Z_{1}\right)$ and $\left(\psi_{2}, Z_{2}\right)$ of $\left(P_{\lambda}\right)$ with the property that $\psi_{1} \leq \psi_{2} \leq Z_{1}, \psi_{1} \leq Z_{2} \leq Z_{1}$ and $\psi_{2} \not \leq Z_{2}$. Additionally assume that ψ_{2}, Z_{2} are not solutions of $\left(P_{\lambda}\right)$. Then there exists at least three solutions $u_{i}, i=1,2,3$ for $\left(P_{\lambda}\right)$ where $u_{1} \in\left[\psi_{1}, Z_{2}\right], u_{2} \in\left[\psi_{2}, Z_{1}\right]$ and $u_{3} \in$ $\left[\psi_{1}, Z_{1}\right] \backslash\left(\left[\psi_{1}, Z_{2}\right] \cup\left[\psi_{2}, Z_{1}\right]\right)$.

Remark 3. Note that the set $[\psi, Z]$ is defined by

$$
[\psi, Z]:=\left\{u \in C^{2}(\Omega) \cap C(\bar{\Omega}): \psi(x) \leq u(x) \leq Z(x) \text { for all } x \in \Omega\right\}
$$

We emphasize that the set $\left[\psi_{1}, Z_{1}\right] \backslash\left(\left[\psi_{1}, Z_{2}\right] \cup\left[\psi_{2}, Z_{1}\right]\right)$ is not empty if two pairs of ordered sub and supersolutions $\left(\psi_{1}, Z_{1}\right)$ and $\left(\psi_{2}, Z_{2}\right)$ satisfying $\psi_{1} \leq \psi_{2} \leq Z_{1}$, $\psi_{1} \leq Z_{2} \leq Z_{1}$ and $\psi_{2} \not \leq Z_{2}$ as in in Lemma 3.2.
Lemma 3.3. Assume (H2). Then the problem

$$
\left\{\begin{array}{l}
-\Delta w+V(x) w=1 \text { in } \Omega, \tag{W}\\
w=0 \text { on } \partial \Omega
\end{array}\right.
$$

has a solution w such that $w(x)>0$ for $x \in \Omega$ and $\frac{\partial w}{\partial \eta}<0$ on $\partial \Omega$ where η is the outward normal vector on $\partial \Omega$.

Proof. Let $Z=K e$. Then from (H2) we have in Ω $-\Delta Z+V(x) Z=K(-\Delta e+V(x) e)=K(1+V(x) e) \geq K\left(1-c_{1} e\right) \geq K\left(1-c_{1}\|e\|_{\infty}\right) \geq 1$, where K is the constant in (3) and $Z=0$ on $\partial \Omega$. Hence, Z is a supersolution of (W). Since $\psi \equiv 0$ is a subsolution but not a solution of (W), there exists a nontrival solution w of (W) such that $0 \leq w(x) \leq Z(x)$ by Lemma 3.1.

Next, we claim that $w(x) \geq \bar{e}(x)$ where \bar{e} is the positive solution of

$$
\left\{\begin{array}{l}
-\Delta \bar{e}+\|V\|_{\infty} \bar{e}=1 \text { in } \Omega \\
\bar{e}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Notice that $\bar{e}>0$ in Ω and $\frac{\partial \bar{e}}{\partial \eta}<0$ on $\partial \Omega$. Let $\tilde{\Omega}:=\{x \in \Omega \mid w(x)<\bar{e}(x)\}$ and suppose $\tilde{\Omega} \not \equiv \emptyset$. Then we find

$$
-\Delta(w-\bar{e})=1-V(x) w+\|V\| \bar{e}-1=\left(\|V\|_{\infty}-V(x)\right) w+\|V\|_{\infty}(\bar{e}-w)>0
$$

in $\tilde{\Omega}$ and $w-\bar{e}=0$ on $\partial \tilde{\Omega}$. By the Maximum principle, we know $w-\bar{e} \geq 0$ on $\tilde{\Omega}$, which is a contradiction. Hence, $\tilde{\Omega}=\emptyset$. Since $w \geq \bar{e}$ in $\Omega, w>0$ in Ω and $\frac{\partial w}{\partial \eta}<0$ on $\partial \Omega$.

Remark 4. The function w can be used to construct a large supersolution Z_{1} of $\left(P_{\lambda}\right)$ in the proof of Theorem 1.1. Here, the property of w obtained in Lemma 3.3, $w(x)>0$ for $x \in \Omega$ and $\frac{\partial w}{\partial \eta}<0$ on $\partial \Omega$, is necessary to construct a supersolution Z_{1} of $\left(P_{\lambda}\right)$ so that $\psi_{1}(x) \leq Z_{1}(x)$ for all $x \in \Omega$ for any subsolution ψ_{1} of $\left(P_{\lambda}\right)$.

4. Proof of Main Theorems

4.1. Proof of Theorem 1.1

Proof. We first construct a positive subsolution ψ_{1} of $\left(P_{\lambda}\right)$ for each $\lambda>0$. Let λ_{1} be the principal eigenvalue of $-\Delta+V(x)$ with Dirichlet boundary condition and ϕ_{1} be a corresponding eigenfunction. Hence ϕ_{1} and λ_{1} satisfy:

$$
\left\{\begin{array}{l}
-\Delta \phi_{1}+V(x) \phi_{1}=\lambda_{1} \phi_{1}, \text { in } \Omega \\
\phi_{1}=0, \text { on } \partial \Omega
\end{array}\right.
$$

It is known that $\phi_{1}>0$ in Ω and $\frac{\partial \phi_{1}}{\partial \eta}<0$ on $\partial \Omega$ (see [7], [9] and [14]). From (H1) there exists $\epsilon_{\lambda}>0$ sufficiently small such that

$$
\lambda_{1} \epsilon_{\lambda} \phi_{1} \leq \lambda f\left(\epsilon_{\lambda} \phi_{1}\right)
$$

Let $\psi_{1}=\epsilon_{\lambda} \phi_{1}$. Then we have

$$
-\Delta \psi_{1}+V(x) \psi_{1}=\epsilon_{\lambda} \lambda_{1} \phi_{1} \leq \lambda f\left(\epsilon_{\lambda} \phi_{1}\right) \text { in } \Omega
$$

and $\psi_{1}=0$ on $\partial \Omega$. Hence, ψ_{1} is a positive solution of $\left(P_{\lambda}\right)$ for all $\lambda>0$. From (H1), for each $\lambda>0$ there exists $M_{\lambda}>0$ such that $\lambda f(s) \leq M_{\lambda}$ for all $s \in[0, \infty)$. Now we define $Z_{1}=M_{\lambda} w$. It follows that

$$
-\Delta Z_{1}+V(x) Z_{1}=M_{\lambda} \geq \lambda f\left(M_{\lambda} w\right)=\lambda f\left(Z_{1}\right) \text { in } \Omega
$$

and $Z_{1}=0$ on $\partial \Omega$, which means that Z_{1} is a positive supersolution of $\left(P_{\lambda}\right)$ for each $\lambda>0$. Since ψ_{1} is a subsolution which is not a solution of $\left(P_{\lambda}\right)$ and $\psi_{1} \leq Z_{1}$ in Ω, there exists a positive solution u_{λ} of $\left(P_{\lambda}\right)$ such that $\psi_{1} \leq u_{\lambda} \leq Z_{1}$ for each $\lambda>0$ based on Lemma 3.1.

4.2. Proof of Theorem 1.2

Proof. We construct a supersolution for $\lambda<\lambda^{*}=\min \left\{\frac{a}{f^{*}(a)} \frac{1}{K\|e\|_{\infty}}, \frac{2 b}{f(d) A B}\right\}$. First we notice that $f(s) \leq f^{*}(s)$ for all $s \geq 0$ and f^{*} is nondecreasing in $[0, . \infty)$ from the definition of $f^{*}(s)$. Let $Z_{2}=a \frac{e}{\|e\|_{\infty}}$. Then we evaluate
$-\Delta Z_{2}+V(x) Z_{2}=\frac{a}{\|e\|_{\infty}}(-\Delta e+V(x) e)=\frac{a}{\|e\|_{\infty}}(1+V(x) e)>\lambda K f^{*}(a)(1+V(x) e)$
where we used the definition of e in $(H 2)$ and the fact $\lambda<\frac{a}{f^{*}(a) K\|e\|_{\infty}}$. Now by the condition (3) at the last inequality, we have

$$
\begin{aligned}
-\Delta Z_{2}+V(x) Z_{2} & >\lambda K f^{*}(a)(1+V(x) e) \\
& \geq \lambda K f^{*}\left(a \frac{e}{\|e\|_{\infty}}\right)\left(1-c_{V}\|e\|_{\infty}\right) \geq \lambda f\left(Z_{2}\right) \text { in } \Omega
\end{aligned}
$$

Clearly, $Z_{2}=0$ on $\partial \Omega$. Hence, Z_{2} is supersolution for $\lambda<\lambda^{*}$.
Now we construct a positive subsolution ψ_{2} of the following problem

$$
\left\{\begin{array}{l}
-\Delta u+\|V\|_{\infty} u=\lambda f(u), \text { in } \Omega \tag{9}\\
u=0, \text { on } \partial \Omega
\end{array}\right.
$$

when $\lambda>\lambda_{*}$. Then, ψ_{2} is a subsolution of $\left(P_{\lambda}\right)$ since

$$
-\Delta \psi_{2}+V(x) \psi_{2} \leq-\Delta \psi_{2}+\|V\|_{\infty} \psi_{2} \leq \lambda f\left(\psi_{2}\right)
$$

We recall $\tilde{f}(u)=\frac{f(u)}{u^{\beta}}-\frac{f(d)}{d^{\beta}} B\|V\|_{\infty} u$ and note that $\tilde{f}(u)$ is nondecreasing on $[a, b]$. Let $a^{*} \in(0, a]$ be such that $\tilde{f}\left(a^{*}\right)=\min _{0<x \leq a} \tilde{f}(x)$ and define $g \in$ $C([0, \infty))$ such that

$$
g(u)= \begin{cases}\tilde{f}\left(a^{*}\right), & u \leq a^{*}, \\ \tilde{f}(u), & u \geq a,\end{cases}
$$

so that g is nondecreasing on $(0, a]$ and $g(u) \leq \tilde{f}(u)$ for all $u \geq 0$. Consider the following problem:

$$
\left\{\begin{align*}
-\Delta u & =\lambda g(u) & & \text { in } \Omega, \tag{10}\\
u & =0 & & \text { on } \partial \Omega .
\end{align*}\right.
$$

For $0<\epsilon<R$ and $\delta, \mu>1$, let us define $\rho:[0, R] \rightarrow[0,1]$ by

$$
\rho(r)=\left\{\begin{array}{l}
1,0 \leq r \leq \epsilon, \\
1-\left(1-\left(\frac{R-r}{R-\epsilon}\right)^{\mu}\right)^{\delta}, \epsilon<r \leq R,
\end{array}\right.
$$

where R is the radius of the biggest inscribed ball in Ω. Then we have

$$
\rho^{\prime}(r)=\left\{\begin{array}{l}
0,0 \leq r \leq \epsilon \\
-\frac{\delta \mu}{R-\epsilon}\left(1-\left(\frac{R-r}{R-\epsilon}\right)^{\mu}\right)^{\delta-1}\left(\frac{R-r}{R-\epsilon}\right)^{\mu-1}, \epsilon<r \leq R .
\end{array}\right.
$$

Let $v(r)=d \rho(r)$. Note that $\left|v^{\prime}(r)\right| \leq d \frac{\delta \mu}{R-\epsilon}$. Define ψ as the radially symmetric solution of

$$
\left\{\begin{array}{l}
-\Delta \psi=\lambda g(v(|x|)), \text { in } B_{R}(0) \\
\psi=0, \text { on } \partial B_{R}(0)
\end{array}\right.
$$

Then ψ satisfies

$$
\left\{\begin{array}{l}
-\left(r^{N-1}\left(\psi^{\prime}(r)\right)^{\prime}=\lambda r^{N-1} g(v(r))\right. \\
\psi^{\prime}(0)=0, \psi(R)=0
\end{array}\right.
$$

Integrating (4.2) for $0<r<R$, we have

$$
\begin{equation*}
-\psi^{\prime}(r)=\frac{\lambda}{r^{N-1}} \int_{0}^{r} s^{N-1} g(v(s)) d s \tag{11}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
\psi(r) \geq v(r), \forall 0 \leq r \leq R \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\psi\|_{\infty} \leq b \tag{13}
\end{equation*}
$$

when $\frac{d}{f(d)} \frac{1}{B}<\lambda<\frac{2 b}{f(d) A B}$.
In order to prove (12), it is enough to show that

$$
\begin{equation*}
-\psi^{\prime}(r) \geq-v^{\prime}(r), \forall 0 \leq r \leq R \tag{14}
\end{equation*}
$$

as $\psi(R)=0=v(R)$. Notice that for $0 \leq r \leq \epsilon, \psi^{\prime}(r) \leq 0=v^{\prime}(r)$. Hence, for $r>\epsilon$ we get from (11)

$$
\begin{aligned}
-\psi^{\prime}(r) & =\frac{\lambda}{r^{N-1}} \int_{0}^{r} s^{N-1} g(v(s)) d s \\
& >\frac{\lambda}{R^{N-1}} \int_{0}^{\epsilon} s^{N-1} g(v(s)) d s \\
& =\frac{\lambda}{R^{N-1}} \frac{\epsilon^{N}}{N} g(d)=\frac{\lambda}{R^{N-1}} \frac{\epsilon^{N}}{N} \tilde{f}(d),
\end{aligned}
$$

where the last equality is obtained from the fact that $g(s)=\tilde{f}(s)$ for all $s \geq a$. If $\lambda>\frac{d}{f(d)} \frac{N R^{N-1}}{(R-\epsilon) \epsilon^{N}} \delta \mu$, then we conclude (14). Note that

$$
\inf _{\epsilon} \frac{d}{\tilde{f}(d)} \frac{N R^{N-1}}{(R-\epsilon) \epsilon^{N}} \delta \mu=\frac{d}{\tilde{f}(d)} \frac{(N+1)^{N+1}}{R^{2} N^{N-1}} \delta \mu
$$

and is achieved at $\epsilon=\frac{N R}{N+1}$. Hence, if $\lambda>\frac{d}{\bar{f}(d)} \frac{(N+1)^{N+1}}{R^{2} N^{N-1}}$, then in the definition of ρ we can choose $\epsilon=\frac{N R}{N+1}$ and the values of δ and μ so that $\lambda \geq \frac{d}{\tilde{f}(d)} \frac{N R^{N-1}}{(R-\epsilon) \epsilon^{N}} \delta \mu$, and hence (14) holds. Note that

$$
\begin{equation*}
\tilde{f}(d)=\left(1-B\|V\|_{\infty}\right) f(d) \tag{15}
\end{equation*}
$$

Hence we obtain

$$
\psi(r) \geq v(r), \forall 0 \leq r \leq R
$$

when $\lambda>\frac{d}{f(d)} \frac{(N+1)^{N+1}}{R^{2} N^{N-1}}=\frac{d}{f(d)} \frac{1}{B}$.
Now to show (13), we integrate (11) from t to R, we obtain that for $0 \leq r \leq R$

$$
\begin{aligned}
\psi(t) & =\int_{t}^{R} \frac{\lambda}{r^{N-1}}\left(\int_{0}^{r} s^{N-1} g(v(s)) d s\right) d r \\
& \leq \int_{t}^{R} \frac{\lambda}{r^{N-1}} g(d)\left(\int_{0}^{r} s^{N-1} d s\right) d r \\
& \leq \lambda \frac{g(d)}{N} \int_{0}^{R} r d r=\lambda \frac{\tilde{f}(d)}{2 N} R^{2},
\end{aligned}
$$

where the last equality is again obtained from the fact that $g(s)=\tilde{f}(s)$ for all $s \geq a$. Hence, if $\lambda<\frac{b}{f(d)} \frac{2 N}{R^{2}}=\frac{2 b}{f(d) A B}$, then we get $\|\psi\|_{\infty} \leq b$. Hence, we find that $v(r) \leq \psi(r) \leq b, \forall 0 \leq r \leq R$ when $\frac{d}{f(d)} \frac{1}{B}<\lambda<\frac{2 b}{f(d) A B}$. Now, since $v(r) \leq \psi(r) \leq b, \forall 0 \leq r \leq R$ and g is nondecreasing on [$0, b$], we have

$$
-\Delta \psi=\lambda g(v) \leq \lambda g(\psi), \quad \text { in } B_{R}(0) \text { and } \psi=0 \text { on } \partial B_{R}(0) .
$$

Here we let $\psi_{2}(x)=\psi(x)$ if $x \in B_{R}(0)$ and $\psi_{2}(x)=0$ if $x \in \Omega \backslash B_{R}(0)$. Then ψ_{2} is a nonnegative subsolution of (10) for $\frac{d}{f(d)} \frac{1}{B}<\lambda<\frac{2 b}{f(d) A B}$. Hence, we have
that for $\lambda>\frac{d}{f(d)} \frac{1}{B}$

$$
\begin{aligned}
-\Delta \psi_{2} \leq \lambda g\left(\psi_{2}\right) \leq \lambda \tilde{f}\left(\psi_{2}\right) & =\lambda\left(f\left(\psi_{2}\right)-\frac{f(d)}{d} B\|V\|_{\infty} \psi_{2}\right) \\
& <\lambda\left(f\left(\psi_{2}\right)-\frac{1}{\lambda}\|V\|_{\infty} \psi_{2}\right) \\
& =\lambda f\left(\psi_{2}\right)-\|V\|_{\infty} \psi_{2}
\end{aligned}
$$

which implies that ψ_{2} is a nonnegative subsolution of (9). Finally, we obtain the subsolution ψ_{2} of $\left(P_{\lambda}\right)$ satisfying $\psi_{2} \not \leq Z_{2}$ for $\lambda_{*}<\lambda<\lambda^{*}$.

From the proof of Theorem 1.1 we construct a sufficiently small subsolution $\psi_{1}=\epsilon_{\lambda} \phi_{1}$ so that $\psi_{1} \leq Z_{2}$ and a sufficiently large supersolution $Z_{1}=M_{\lambda} w$ so that $\psi_{2} \leq Z_{1}$. Hence, there exist a positive solutions u_{1} and u_{2} of $\left(P_{\lambda}\right)$ such that $\psi_{1} \leq u_{1} \leq Z_{2}$ and $\psi_{2} \leq u_{2} \leq Z_{1}$. Note that $u_{1} \neq u_{2}$ as $\psi_{2} \not \leq Z_{2}$. By three solution theorem ([1] and [17]), there exists a positive solution u_{3} such that $u_{3} \in\left[\psi_{1}, Z_{1}\right] \backslash\left(\left[\psi_{1}, Z_{2}\right] \cup\left[\psi_{2}, Z_{1}\right]\right)$.

References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620-709.
[2] T. Bartsch and Z.-Q. Wang, Sign changing solutions of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 191-198.
[3] K. J. Brown, M. M. A. Ibrahim and R. Shivaji, S - shaphed bifurcation curves, Nonlinear Analysis, 5 (1981), 475-486.
[4] D. Butler, E. Ko, E. Lee and R. Shivaji, Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2713-2731.
[5] D. Butler, S. Sasi and R. Shivaji, Existence of alternate steady states in a phosphorous cycling model, ISRN Math. Anal. 2012, Art. ID 869147, 11 pp.
[6] S. R. Carpenter, D. Ludwig and W. A. Brock, Management of eutrophication for lakes subject to potentially irreversible change, Ecological Applications, vol. 9 (1999), no 3, 751-771.
[7] M. Cuesta, Q. Ramos and Humberto, A weighted eigenvalue problem for the p-Laplacian plus a potential, NoDEA Nonlinear Differential Equations Appl. 16 (2009), no. 4, 469491.
[8] G. M. Figueiredo, J. R. Santos Júnior and A. Suárez, Structure of the set of positive solutions of a non-linear Schrödinger equation, (English summary) Israel J. Math. 227 (2018), no. 1, 485-505.
[9] J. Fleckinger, J. Hernández and F. de Thélin, Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 7 (2004), no. 1, 159-188.
[10] Y. Guo, Z.-Q. Wang, X. Zeng and H.-S. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity 31 (2018), no. 3, 957979.
[11] E. Ko, E.K. Lee and R. Shivaji, Multiplicity results for classes of infinite positone problems, Z. Anal. Anwend. 30 (2011), no. 3, 305-318.
[12] E. K. Lee, R. Shivaji and J.Ye, Positive solutions for elliptic equations involving nonlinearities with falling zeroes, Applied Mathematics Letters 22 (2009), 846-851.
[13] J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations 29 (2004), no. 5-6, 879-901.
[14] J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations 127 (1996), no. 1, 263-294.
[15] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270-291.
[16] M. Ramaswamy and R. Shivaji, Multiple positive solutions for classes of p-laplacian equations, Differential Integral Equations, 17 (2004), no. 11-12, 1255-1261.
[17] R. Shivaji, A remark on the existence of three solutions via sub-super solutions. Nonlinear analysis and applications, (Arlington, Tex., 1986), 561-566, Lecture Notes in Pure and Appl. Math., 109, Dekker, New York, 1987.

Eunkyung Ko
Major in Mathematics, College of Natural Science, Keimyung University, Daegu 42601, South Korea

Email address: ekko@kmu.ac.kr

[^0]: Received January 23, 2024; Accepted February 27, 2024.
 2010 Mathematics Subject Classification. 35J25, 35J65, 35K57.
 Key words and phrases. Schrödinger-type elliptic equation, multiplicity, positive solution.

 * This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (NRF-2020R1F1A1A01065912).

