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ON A CLASS OF QUASILINEAR ELLIPTIC EQUATION

WITH INDEFINITE WEIGHTS ON GRAPHS

Shoudong Man and Guoqing Zhang

Abstract. Suppose that G = (V, E) is a connected locally finite graph
with the vertex set V and the edge set E. Let Ω ⊂ V be a bounded
domain. Consider the following quasilinear elliptic equation on graph G

{

−∆pu = λK(x)|u|p−2u+ f(x, u), x ∈ Ω◦,

u = 0, x ∈ ∂Ω,

where Ω◦ and ∂Ω denote the interior and the boundary of Ω, respectively,
∆p is the discrete p-Laplacian, K(x) is a given function which may change
sign, λ is the eigenvalue parameter and f(x, u) has exponential growth.
We prove the existence and monotonicity of the principal eigenvalue of
the corresponding eigenvalue problem. Furthermore, we also obtain the
existence of a positive solution by using variational methods.

1. Introduction

In this paper, we consider the following quasilinear elliptic equation with
indefinite weights on graph G

(1.1)

{

−∆pu = λK(x)|u|p−2u+ f(x, u), x ∈ Ω◦,
u = 0, x ∈ ∂Ω,

where G = (V,E) is a locally finite graph, Ω ⊂ V is a bounded domain, Ω◦

and ∂Ω denote the interior and the boundary of Ω, respectively, ∆p denotes
the discrete p-Laplacian, λ is the eigenvalue parameter and K(x) is a given
function which satisfies

(1.2) K+(x) 6≡ 0, K ∈ L1(Ω), K±(x) = max{±K(x), 0}.

Quasilinear elliptic equations have been studied extensively on Euclidean do-
main and Riemannian manifold. Zhang and Liu [14] investigated the following
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critical elliptic equations with indefinite weights

(1.3)

{

−∆u− µ u
(|x| ln R

|x|
)2

= λK(x)u + f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where K(x) satisfies (1.2), and proved the existence of a nontrivial solution by
using the Mountain Pass Lemma. As for the p-Laplacian, in particular, Fan
and Li [3] discussed

(1.4)

{

−△pu = λ|u|p−2u+ f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

where 0 < λ < λ2 and λ2 is the second eigenvalue of the p-Laplacian with
indefinite weights, and obtained the existence of a nontrivial solution for the
problem (1.4). In [11], B. Xuan studied the following elliptic equation

(1.5)

{

−△pu = λV |u|p−2u+ f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

where p > 1, Ω ⊂ R
N is a bounded domain, and V (x) is a given function

satisfying

V + 6≡ 0 and V ∈ Ls(Ω).

B. Xuan obtained the existence of a nontrivial weak solution for the problem
(1.5) in the case of 0 < λ < λ1 by the Mountain Pass Lemma and in the
case of λ1 ≤ λ < λ2 by the Linking Argument Theorem, respectively. In [2],
M. Degiovanni and S. Lancelotti studied the problem (1.5) when V ∈ L∞(Ω)
and f(x, u) is subcritical and superlinear at 0 and at infinity respectively, and
they proved that there exists a nontrivial solution for the problem (1.5) for any
λ ∈ R .

Most recently, the investigation of discrete weighted Laplacians and vari-
ous equations on graphs have attracted much attention [4–9, 13, 15, 16]. A.
Grigor’yan, Y. Lin and Y. Y. Yang [7] studied the following Yamabe type
equation

(1.6)

{

−∆pu+ h(x)|u|p−2u = f(x, u), x ∈ Ω◦,
u ≥ 0, x ∈ Ω◦, u = 0, x ∈ ∂Ω,

and obtained the existence of a positive solution if h(x) > 0. Ge [4] studied
the following p-th Yamabe equation

(1.7) −∆pu+ h(x)up−1 = λguα−1, x ∈ Ω◦,

where α ≥ p > 1, and proved the existence of a positive solution. Zhang
and Lin [16] proved that the problem (1.7) has at least a positive solution as
2 < α ≤ p.

In this paper, we study the quasilinear elliptic equation (1.1) on graph G,
which can be viewed as a discrete version of the equation (1.5) studied by B.
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Xuan, etc. Firstly, we consider the following eigenvalue problem with indefinite
weights on graph G

(1.8)

{

−∆pu = λK(x)|u|p−2u, x ∈ Ω◦,
u = 0, x ∈ ∂Ω,

where K(x) satisfies the assumption (1.2), and obtain the existence and mono-
tonicity of the principal eigenvalue. Secondly, using the Mountain Pass Lemma
and the Sobolev embedding theorem on graph G, we obtain the existence of a
positive solution of the problem (1.1) as the nonlinear term f(x, s) has expo-
nential growth as s→ +∞.

This paper is organized as follows. In Section 2, we introduce some notations
and lemmas on graph G, and state our main results. In Section 3, we prove
our main theorems.

2. Preliminaries and main results

Let G = (V,E) be a graph. The degree of vertex x, denoted by µ(x), is
the number of edges connected to x. If µ(x) is finite for every vertex x of
V , we say that G is a locally finite graph. We denote x ∼ y if vertex x is
adjacent to vertex y, and ωxy = ωyx > 0 is the edge weight. The finite measure
µ(x) =

∑

y∼x ωxy. The boundary of Ω is defined as ∂Ω = {y∈̄Ω : ∃x ∈ Ω such

that xy ∈ E} and the interior of Ω is denoted by Ω◦ = Ω \ ∂Ω. A graph G is
called connected if for any vertices x, y ∈ V , there exists {xi}

n
i=0 that satisfies

x = x0 ∼ x1 ∼ x2 ∼ · · · ∼ xn = y. In this paper, we suppose that all graphs
are connected.

From [7], for any function u : Ω → R, the µ-Laplacian of u is defined as

(2.1) ∆u(x) =
1

µ(x)

∑

y∼x

ωxy[u(y)− u(x)].

The associated gradient form reads

Γ(u, v)(x) =
1

2
{∆(u(x)v(x)) − u(x)∆v(x) − v(x)∆u(x)}(2.2)

=
1

2µ(x)

∑

y∼x

ωxy(u(y)− u(x))(v(y) − v(x)).(2.3)

The length of the gradient for u is

(2.4) |∇u|(x) =
√

Γ(u, u)(x) =

(

1

2µ(x)

∑

y∼x

ωxy(u(y)− u(x))2

)1/2

.

For any function u : Ω → R, we denote

(2.5)

∫

Ω

udµ =
∑

x∈Ω

µ(x)u(x),



860 S. MAN AND G. ZHANG

and set

(2.6) V ol(G) =

∫

Ω

dµ.

The p-Laplacian of u : Ω → R, namely ∆pu, is defined in the distributional
sense as

(2.7)

∫

Ω

(∆pu)φdµ = −

∫

Ω

|∇u|p−2Γ(u, φ)dµ, ∀φ ∈ Cc(Ω),

where Cc(Ω) is the set of all functions with compact support. So, ∆pu can be
written as

(2.8) ∆pu(x) =
1

2µ(x)

∑

y∼x

ωxy(|∇u|
p−2(y) + |∇u|p−2(x))(u(y) − u(x)).

For any p > 1, W 1,p(Ω) is defined as a space of all functions u : Ω → R

satisfying

(2.9) ||u||W 1,p(Ω) =

(
∫

Ω

|∇u|pdµ+

∫

Ω

|u|pdµ

)1/p

<∞.

Denote C1
0 (Ω) as a set of all functions u : Ω → R with u = 0 on ∂Ω, and

W 1,p
0 (Ω) as the completion of C1

0 (Ω) under the norm (2.9).

Lemma 2.1 ([7, Theorem 7]). Let G = (V,E) be a locally finite graph and

Ω be a bounded domain of V such that Ω0 6= ∅. For any p > 1, W 1,p
0 (Ω) is

embedded in Lq(Ω) for all 1 ≤ q ≤ +∞. In particular, there exists a constant

C depending only on p and Ω such that

(2.10)

(
∫

Ω

|u|qdµ

)1/q

≤ C

(
∫

Ω

|∇u|pdµ

)1/p

for all 1 ≤ q ≤ +∞ and u ∈ W 1,p
0 (Ω). Moreover, W 1,p

0 (Ω) is pre-compact,

namely, if {uk} is bounded in W 1,p
0 (Ω), then up to a subsequence, there exists

some u ∈W 1,p
0 (Ω) such that uk → u in W 1,p

0 (Ω).

By Lemma 2.1, we obtain that W 1,p
0 (Ω) is a Banach space.

Lemma 2.2 ([1, Mountain Pass Lemma]). Let (X, ||·||) be a Banach space, J ∈
C1(X,R), e ∈ X and r > 0 such that ||e|| > r and b = inf ||u||=r J(u) > J(0) >
J(e). If J satisfies the (PS)c condition with c = infγ∈Γmaxt∈[0,1] J(γ(t)), where
Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}, then c is a critical value of J.

For the well-know Trudinger-Moser inequality on Euclidean domain and
complete Riemannian manifold [10, 12], by Lemma 2.1, we have:

Lemma 2.3 (Trudinger-Moser inequality on locally finite graphs). Suppose

that G = (V,E) is a locally finite graph. Let Ω ⊂ V be a bounded domain.
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Then there exists a constant C which depends only on p and Ω such that

(2.11) sup
||u||

W
1,p
0 (Ω)

≤1

∫

Ω

exp(α|u|
p

p−1 )dµ ≤ C|Ω| for any α > 1 and p > 2,

where |Ω| =
∫

Ω dµ(x) = Vol Ω, and Vol Ω denotes the volume of the subgraph

Ω.

Proof. For any function u which satisfies ||u||W 1,p
0 (Ω) ≤ 1, by Lemma 2.1 and

p
p−1 > 1, we obtain that there exists a constant C0 such that

(2.12)

(
∫

Ω

|u|
p

p−1 dµ

)

p−1
p

≤ C0

(
∫

Ω

|∇u|pdµ

)
1
p

= C0||u||W 1,p
0 (Ω) ≤ C0.

Denote µmin = minx∈Ω µ(x). Then (2.12) leads to

(2.13) ||u||L∞(Ω) ≤
C0

µmin
.

Thus for any α > 1 and p > 2, we have

(2.14)

(
∫

Ω

exp(α|u|
p

p−1 )dµ

)

p−1
p

≤ exp

(

αC0

µmin

)

|Ω|
p−1
p .

So, we have

(2.15) sup
||u||

W
1,p
0 (Ω)

≤1

∫

Ω

exp(α|u|
p

p−1 )dµ ≤ C|Ω|,

where C =
(

exp( αC0

µmin
)
)

p
p−1

. �

In order to find the principal eigenvalue of the problem (1.8), we solve the
following minimization problem

(2.16) (P ) minimize

∫

Ω

|∇u|pdµ, u ∈W 1,p
0 (Ω) and

∫

Ω

K(x)|u|pdµ = 1.

Now, we state our main theorems.

Theorem 2.4. Under the assumption (1.2), Problem (P ) has a solution e1 ≥ 0.
Moreover, e1 is an eigenvalue of the problem (1.8) corresponding to the principal

eigenvalue λ1 =
∫

Ω |∇e1|pdµ.

Theorem 2.5. Let K1(x) and K2(x) be two weights which satisfy the assump-

tion (1.2). Assume K1(x) < K2(x) for all x ∈ Ω and {x ∈ Ω : K1 < K2} 6= ∅.
Then λ1(K2) < λ1(K1).

Theorem 2.6. Let Ω1 be a proper bounded open subset of a bounded domain

Ω2 ⊂ K. Then λ1(Ω2) ≤ λ1(Ω1).

Theorem 2.7. Let G = (V,E) be a locally finite graph and Ω ⊂ V be a bounded

domain with Ω0 6= ∅. Let λ1 be defined as in Theorem 2.4. Set 0 < λ < λ1 and

p > 2. Suppose that f : Ω× R → R satisfies the following hypotheses:
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(H1) For any x ∈ Ω, f(x, t) is continuous in t ∈ R;
(H2) For all (x, t) ∈ Ω× [0,+∞), f(x, t) ≥ 0, and f(x, 0) = 0 for all x ∈ Ω;
(H3) f(x, t) has exponential growth at +∞, that is, for all α > 1,

(2.17) lim
t→+∞

f(x, t)

exp(α|t|
p

p−1 )
= 0;

(H4) For any x ∈ Ω, there holds limt→0+
f(x,t)
tp−1 = 0;

(H5) There exist q > p > 2 and s0 > 0 such that if s ≥ s0, then there holds

0 < qF (x, s) < f(x, s)s for any x ∈ Ω, where F (x, s) =
∫ s

0 f(x, t)dt.

Then there exists a positive solution for the problem (1.1).

3. The proof of main Theorems

Proof of Theorem 2.4. Now, we introduce the functional φ, ψ: W 1,p
0 (Ω) → R

defined by

(3.1) φ(u) =

∫

Ω

|∇u|pdµ, and ψ(u) =

∫

Ω

K(x)|u|pdµ.

Let us also introduce the set

(3.2) M = {u ∈W 1,p
0 (Ω) : ψ(u) = 1}.

By the assumption (1.2), we haveM 6= ∅ andM is a manifold of C1 inW 1,p
0 (Ω).

Obviously the functional φ(u) is bounded from below. Hence, let {un} be a
minimizing sequence for the problem (P ) such that

1

p

∫

Ω

|∇uk|
pdµ ≤ λ1 + ok(1)||uk||W 1,p

0 (Ω),(3.3)

∫

Ω

|∇uk|
pdµ = ok(1)||uk||W 1,p

0 (Ω).(3.4)

Calculate (3.3)− 1
θ×(3.4), we have

(3.5)

(

1

p
−

1

θ

)

||um||p
W 1,p

0 (Ω)
≤M,

where θ > p is a constant. This implies that {uk} is bounded inW 1,p
0 (Ω). Thus

by Lemma 2.1, there exists some e1 ∈ W 1,p
0 (Ω) such that un → e1 in W 1,p

0 (Ω)
and

(3.6) φ(e1) =

∫

Ω

|∇e1|
pdµ ≤ lim inf

n→∞

∫

Ω

|∇un|
pdµ = lim inf

n→∞
φ(un) = inf(P )

and
∫

Ω
K(x)|e1|pdµ = 1. It is clear that e1 is a solution of the problem (P ).

Moreover, since |e1| is also a solution of the problem (P ), we may assume
e1 ≥ 0.

Since for every v ∈ C1
c (Ω), we have

(3.7)
d

dε
|ε=0

φ(e1 + εv)

ψ(e1 + εv)
= 0.
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So e1 is an eigenfunction of the problem (P ) corresponding to the principal
eigenvalue λ1 =

∫

Ω
|∇e1|pdµ. �

Proof of Theorem 2.5. By Theorem 2.4, we have

(3.8) λ1 = inf
u6≡0,u|∂Ω=0

∫

Ω
|∇u|pdµ

∫

ΩK(x)|u|pdµ
= inf

u∈M
φ(u).

Let u1 be an eigenfunction associated to λ1(K1). So we have

(3.9) λ1(K1) =

∫

Ω
|∇u1|pdµ

∫

ΩK(x)|u1|pdµ
.

Since K1 < K2 and µ(x) > 0 for all x ∈ Ω, we have
∫

Ω

K1(x)|u1|
pdµ =

∑

x∈Ω

K1(x)|u1(x)|
pµ(x)

<
∑

x∈Ω

K2(x)|u1(x)|
pµ(x)(3.10)

=

∫

Ω

K2(x)|u1|
pdµ.

Using u2 = u1

(
∫
Ω
K2(x)|u1|pdµ)1/p

as an admissible function in (3.8) for λ1(K2),

we have

λ1(K2) ≤

∫

Ω
|∇u2|pdµ

∫

ΩK2(x)|u2|pdµ
=

∫

Ω
|∇u1|pdµ

∫

ΩK2(x)|u1|pdµ

<

∫

Ω
|∇u1|pdµ

∫

Ω
K1(x)|u1|pdµ

= λ1(K1).(3.11)

Thus we have λ1(K2) < λ1(K1). �

Proof of Theorem 2.6. Let u ∈ W 1,p
0 (Ω1) be an eigenfunction associated to

λ1(Ω1), that is,

(3.12) λ1(Ω1) =

∫

Ω1
|∇u|pdµ

∫

Ω1
K(x)|u|pdµ

.

Let ũ ∈ W 1,p
0 (Ω2) satisfy

(3.13) ũ =

{

u, x ∈ Ω1,

0, x ∈ Ω2 \ Ω1.

So we have
∫

Ω2

K|ũ|pdµ =
∑

x∈Ω1

K(x)|u(x)|pµ(x) =

∫

Ω1

K|u|pdµ,(3.14)

∫

Ω2

|∇ũ|pdµ =

∫

Ω1

|∇ũ|pdµ.(3.15)
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Combining (3.14) and (3.15), and taking ũ/(
∫

Ω2
Kũpdµ)1/p as an admissible

function for λ1(Ω2), we have

(3.16) λ1(Ω2) ≤

∫

Ω2
|∇ũ|pdµ

∫

Ω2
K(x)|ũ|pdµ

=

∫

Ω1
|∇ũ|pdµ

∫

Ω1
K(x)|ũ|pdµ

= λ1(Ω1).

Thus, the proof is complete. �

Proof of Theorem 2.7. Now, we define the functional J : W 1,p
0 (Ω) → R by

(3.17) J(u) =
1

p

∫

Ω

|∇u|pdµ−
λ

p

∫

Ω

K(x)|u|pdµ−

∫

Ω

F (x, u+)dµ,

where u+(x) = max{u(x), 0}. By the definition of λ1, for u ∈ W 1,p
0 (Ω) we have

(3.18) λ1

∫

Ω

K(x)|u|pdµ ≤

∫

Ω

|∇u|pdµ.

Since 0 < λ < λ1, we have

(3.19) J(u) ≥
1

p
(1−

λ

λ1
)

∫

Ω

|∇u|pdµ−

∫

Ω

F (x, u+)dµ.

Indeed, from (H4), there exist τ, δ > 0 such that if |u| ≤ δ we have

(3.20) f(x, u+) ≤ τ(u+)p−1.

On the other hand, by (H3), there exist c, β such that

(3.21) f(x, u+) ≤ c exp(β|u|
p

p−1 ), ∀|u| ≥ δ.

Then we obtain that, for q > p,

(3.22) F (x, u+) ≤ c exp(β|u|
p

p−1 )|u|q, ∀|u| ≥ δ.

Combining (3.20) and (3.22), we obtain that

(3.23) F (x, u+) ≤ τ
|u|p

p
+ c exp(β|u|

p
p−1 )|u|q.

By the Hölder inequality, we have

J(u) ≥
1

p
(1−

λ

λ1
)||u||p

W 1,p
0 (Ω)

−
τ

p

∫

Ω

|u|pdµ

− c

(
∫

Ω

exp(βp|u|
p

p−1 )dµ

)
1
p
(
∫

Ω

|u|qp
′

dµ

)
1
p′

,(3.24)

where 1
p + 1

p′ = 1. By Lemma 2.3, when ||u||W 1,p
0 (Ω) ≤ 1 for any u ∈ W 1,p

0 (Ω)

we obtain that

(3.25)

∫

Ω

exp(βp|u|
p

p−1 )dµ < C|Ω|.
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By Lemma 2.1, there exists some constant C that depends only on p and Ω
such that

(
∫

Ω

|u|pdµ

)1/p

≤ C

(
∫

Ω

|∇u|pdµ

)1/p

= C||u||W 1,p
0 (Ω),(3.26)

(
∫

Ω

|u|qp
′

dµ

)1/p′

≤ C

(
∫

Ω

|∇u|pdµ

)q/p

= C||u||q
W 1,p

0 (Ω)
.(3.27)

By (3.24), (3.25), (3.26) and (3.27), we can find some sufficiently small r > 0
such that if ||u||W 1,p

0 (Ω) = r we have

(3.28) J(u) ≥
1

p
(1−

λ

λ1
− Cτ)||u||p

W 1,p
0 (Ω)

− C||u||q
W 1,p

0 (Ω)
.

By (H4), we set τ < 1
C (1− λ

λ1
). Since q > p > 2, we have

(3.29) inf
||u||

W
1,p
0

(Ω)
=r
J(u) > 0.

By (H5), there exist two positive constants c1 and c2 such that

(3.30) F (x, u+) ≥ c1(u
+)q − c2.

Take u0 ∈ W 1,p
0 (Ω) such that u0 ≥ 0 and u0 6≡ 0. For any t > 0, we have

(3.31) J(tu0) ≤
tp

p
||u0||

p

W 1,p
0 (Ω)

−
tp

p
λ

∫

Ω

K(x)|u0|
pdµ− c1t

q

∫

Ω

uq0dµ+ c2|Ω|.

Since q > p > 2, we have J(tu0) → −∞ as t → +∞. Hence there exists some

u1 ∈W 1,p
0 (Ω) satisfying

(3.32) J(u1) < 0, ||u1||W 1,p
0 (Ω) > r.

Now we prove that J(u) satisfies the (PS)c condition for any c ∈ R. To see
this, we assume J(uk) → c and J ′(uk) → 0 as k → ∞, that is

1

p

∫

Ω

|∇uk|
pdµ−

1

p
λ

∫

Ω

K(x)|uk|
pdµ−

∫

Ω

F (x, u+k )dµ=c+ ok(1),(3.33)

∫

Ω

|∇uk|
pdµ−λ

∫

Ω

K(x)|uk|
pdµ−

∫

Ω

ukf(x, u
+
k )dµ=ok(1)||uk||W 1,p

0 (Ω).(3.34)

By the definition of λ1, (3.33) and (H5), we have

1

p
(1−

λ

λ1
)

∫

Ω

|∇uk|
pdµ ≤

∫

Ω

F (x, u+k )dµ+ c+ ok(1)

≤
1

q

∫

Ω

ukf(x, u
+
k )dµ+ c+ ok(1).(3.35)

By (3.34) and (3.35), we get

(3.36) (
1

p
−

1

q
)(1 −

λ

λ1
)

∫

Ω

|∇uk|
pdµ ≤ C −

1

q
ok(1)||uk||W 1,p

0 (Ω).
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Since q > p, we have ||uk||W 1,p
0 (Ω) ≤ M . Thus {uk} is bounded in W 1,p

0 (Ω).

Then the (PS)c condition follows by Lemma 2.1.
Combining (3.29), (3.32) and the obvious fact that J(0) = 0, we conclude

by Lemma 2.2 that there exists a function u ∈W 1,p
0 (Ω) such that

(3.37) J(u) = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) > 0

and J ′(u) = 0, where Γ = {γ ∈ C([0, 1],W 1,p
0 (Ω)) : γ(0) = 0, γ(1) = u1}.

Hence there exists a nontrivial solution u ∈W 1,p
0 (Ω) to the equation

{

−∆pu = λK(x)|u|p−2u+ f(x, u), x ∈ Ω◦,
u = 0, x ∈ ∂Ω.

Testing the above equation by u− = min{u, 0} and noting that

(3.38) Γ(u−, u) = Γ(u−, u−) + Γ(u−, u+) ≥ |∇u−|2,

since 0 < λ < λ1, we have
∫

Ω

|u−|pdµ− λ

∫

Ω

K(x)|u−|pdµ ≤ −

∫

Ω

u−∆pudµ− λ

∫

Ω

K(x)u−|u−|p−2udµ

=

∫

Ω

u−f(x, u+)dµ = 0.

This implies that u− ≡ 0 and thus u ≥ 0. �
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