• Title/Summary/Keyword: Elements of Algebra

Search Result 96, Processing Time 0.022 seconds

RINGS IN WHICH SUMS OF d-IDEALS ARE d-IDEALS

  • Dube, Themba
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.539-558
    • /
    • 2019
  • An ideal of a commutative ring is called a d-ideal if it contains the annihilator of the annihilator of each of its elements. Denote by DId(A) the lattice of d-ideals of a ring A. We prove that, as in the case of f-rings, DId(A) is an algebraic frame. Call a ring homomorphism "compatible" if it maps equally annihilated elements in its domain to equally annihilated elements in the codomain. Denote by $SdRng_c$ the category whose objects are rings in which the sum of two d-ideals is a d-ideal, and whose morphisms are compatible ring homomorphisms. We show that $DId:\;SdRng_c{\rightarrow}CohFrm$ is a functor (CohFrm is the category of coherent frames with coherent maps), and we construct a natural transformation $RId{\rightarrow}DId$, in a most natural way, where RId is the functor that sends a ring to its frame of radical ideals. We prove that a ring A is a Baer ring if and only if it belongs to the category $SdRng_c$ and DId(A) is isomorphic to the frame of ideals of the Boolean algebra of idempotents of A. We end by showing that the category $SdRng_c$ has finite products.

A Study on the Meaning of Construction in Euclid Elements (에서 작도의 의미에 대한 고찰)

  • Kim, Chang Su;Kang, Jeong Gi
    • Journal of the Korean School Mathematics Society
    • /
    • v.20 no.2
    • /
    • pp.119-139
    • /
    • 2017
  • The construction in the ancient Greek era had more meanings than a construction in the present education. Based on this fact, this study examines the meaning of the current textbook. In contrast, we have extracted the meaning of the constructions in Euclid Elements. In addition, we have been thinking about what benefits can come up if the meaning of the construction in Euclid Elements was reflected in current education, and suggested a way to exploit that advantage. As results, it was confirmed that the construction in the current textbook was merely a means for introducing and understanding the congruent conditions of the triangle. On the other hand, the construction had four meanings in Euclid Elements; Abstract activities that have been validated by the postulates, a mean of demonstrating the existence of figures and obtaining validity for the introduction of auxiliary lines, refraining from intervening in the argument except for the introduction of auxiliary lines, a mean of dealing with numbers and algebra. Finally we discussed the advantages of using the constructions as a means of ensuring the validity of the introduction of the auxiliary line to the argument. And we proposed a viewpoint of construction by intervention of virtual tools for auxiliary lines which can not be constructed with Euclid tool.

  • PDF

GRADED PSEUDO-VALUATION RINGS

  • Fatima-Zahra Guissi;Hwankoo Kim;Najib Mahdou
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.5
    • /
    • pp.953-973
    • /
    • 2024
  • Let R = ⊕α∈Γ Rα be a commutative ring graded by an arbitrary torsionless monoid Γ. A homogeneous prime ideal P of R is said to be strongly homogeneous prime if aP and bR are comparable for any homogeneous elements a, b of R. We will say that R is a graded pseudo-valuation ring (gr-PVR for short) if every homogeneous prime ideal of R is strongly homogeneous prime. In this paper, we introduce and study the graded version of the pseudo-valuation rings which is a generalization of the gr-pseudo-valuation domains in the context of arbitrary Γ-graded rings (with zero-divisors). We then study the possible transfer of this property to the graded trivial ring extension and the graded amalgamation. Our goal is to provide examples of new classes of Γ-graded rings that satisfy the above mentioned property.

HYPOELLIPTICITY OF SYSTEMS OF ANALYTIC VECTOR FIELDS

  • Kwon, K.H.;Song, B.C.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.43-46
    • /
    • 1989
  • In this paper, we are concerned with the pointwise-hypoellipticity (see Definition 2.1) of an m-dimensional Frobenious Lie algebra L of analytic complex vector fields in somel open subset .ohm. of $R^{m+1}$. That is, L is a set of complex vector fields in .ohm. with (real-) analytic coefficients satisfying: (A) each point of .ohm. has an open neighborhood in which L is generated by m linearly independent elements of L; (B) L is closed under the commutation bracket [A, B]. The pointwise-analytic hypoellipticity of L is completely characterized by M.S. Baouendi and F. Treves in [1]. Here, we shall prove that if L is hypoelliptic at a point then it must be analytic hypoelliptic in a full neighborhood of the same point. When the coefficients are $C^{\infty}$, hypoellipticity of L was discussed in [2].2].

  • PDF

A Study on the Theoretical Structure Modeling using ISM & FSM (ISM과 FSM을 이용한 이론적 구조모형화에 대한 연구)

  • 조성훈;정민용
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.47
    • /
    • pp.219-232
    • /
    • 1998
  • A lot of difficulties exist in analyzing the structure of a system owing to the complex and organic relations in the systems we face in reality. Focuses have been put on the research of optimal solution in a defined structure, however, on the assumption that the structure of the system has been already defined. With the grasping of the structure as the most prior condition, ISM(Interpretive Structural Modeling) and FSM(Fuzzy Structural Modeling) are suggested as solutions in this paper. ISM uses the systematic application of some elementary notions of graph theory and boolean algebra, FSM uses Fuzzy conception for representing relationship between elements. In FSM, the entries in the relation matrix are taken to value on the interval [0,1] by virtue of a fuzzy binary relation. Numeric examples are used as the actual application as follows.

  • PDF

Electromagnetic Behavior of High -$T_c$ Superconductors underthequenchstate -

  • 정동철;최효상;황종선;윤기웅;한병성
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.183-187
    • /
    • 2002
  • In this paper we analyzed the electromagnetic behavior of high $-T_{c}$ superconductor under the quench state using finite element method. Poisson equation was used in finite element analysis as a governing equation and was solved using algebra equation using Gallerkin method. We first investigate d the electromagnetic behavior of U-type superconductor. Finally we applied our analysis techniques to 5.5 kVA meander-line superconducting fault current limiters (SFCL) which are currently developed by many power-system researcher in the world. Meshes of 14,600 elements were used in analysis of this SFCL. Analysis results show that the distribution of current density was concentrated to inner curvature in meander-line type-superconductors and maximum current density 14.61 $A/\m^2$ and also maximum Joule heat was 6,420 W/㎥. We concluded that this meander line-type SFCL was not pertinet fur uniform electromagnetic field distribution.n.

  • PDF

Sway buckling of down-aisle, spliced, unbraced pallet rack structures

  • Beale, R.G.;Godley, M.H.R.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.307-320
    • /
    • 2003
  • This paper presents an efficient approach to the determination of the buckling loads of down-aisle, spliced, unbraced, pallet rack structures subjected to vertical and horizontal loads. A pallet rack structures is analysed by considering the stability equations of an equivalent free-sway column. The effects of semi-rigid beam-to-upright, splice-to-upright and base-plate-to-upright connections are fully incorporated into the analysis. Each section of upright between successive beam levels in the pallet rack is considered to be a single column element with two rotational degrees of freedom. A computer algebra package was used to determine modified stability equations for column elements containing splices. The influence of the position of splices in a pallet rack is clearly demonstrated.

Variations and Series Expansions of the Symbolic Multiple-Valued Logic functions (기호 다치 논리함수와 그 변화 및 전개)

  • 이성우;정환묵
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.5
    • /
    • pp.1-7
    • /
    • 1983
  • Generally, multiple-valued logic algebra is based on the number system of modulo-M. In this paper, characters a, b, c‥… each of them represents the independent state, are regarded as the elements of the symbolic multiple-valued logic. By using the set theory, the symbolic multiple - valued logic and their functions are defined. And Varation for the symbolic logic function due to the variation of a variable and their properties are suggested and analized. With these variations, the MacLaurin's and Taylor's Series expansions of the symbolic logic functions are proposed and proved.

  • PDF

MAXIMALITY OF THE ANALYTIC SUBALGEBRAS OF C*-ALGEBRAS WITH FLOWS

  • Kishimoto, Akitaka
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1333-1348
    • /
    • 2013
  • Given a faithful flow ${\alpha}$ on a $C^*$-algebra A, when A is ${\alpha}$-simple we will show that the closed subalgebra of A consisting of elements with non-negative Arveson spectra is maximal if and only if the crossed product of A by ${\alpha}$ is simple. We will also show how the general case can be reduced to the ${\alpha}$-simple case, which roughly says that any flow with the above maximality is an extension of a trivial flow by a flow of the above type in the ${\alpha}$-simple case. We also propose a condition of essential maximality for such closed subalgebras.

A NOTE ON THE INTEGRAL POINTS ON SOME HYPERBOLAS

  • Ko, Hansaem;Kim, Yeonok
    • The Pure and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.137-148
    • /
    • 2013
  • In this paper, we study the Lie-generalized Fibonacci sequence and the root system of rank 2 symmetric hyperbolic Kac-Moody algebras. We derive several interesting properties of the Lie-Fibonacci sequence and relationship between them. We also give a couple of sufficient conditions for the existence of the integral points on the hyperbola $\mathfrak{h}^a:x^2-axy+y^2=1$ and $\mathfrak{h}_k:x^2-axy+y^2=-k$ ($k{\in}\mathbb{Z}_{>0}$). To list all the integral points on that hyperbola, we find the number of elements of ${\Omega}_k$.