• Title/Summary/Keyword: Electronic parameters

Search Result 2,459, Processing Time 0.032 seconds

Circuit Modeling of Interdigitated Capacitors Fabricated by High-K LTCC Sheets

  • Kim, Kil-Han;Ahn, Min-Su;Kang, Jung-Han;Yun, Il-Gu
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.182-190
    • /
    • 2006
  • The circuit modeling of interdigitated capacitors fabricated by high-k low-temperature co-fired ceramic (LTCC) sheets was investigated. The s-parameters of each test structure were measured from 50 MHz to 10 GHz, and the modeling was performed using these measured sparameters up to the first resonant frequency. Each test structure was divided into appropriate building blocks. The equivalent circuit of each building block was composed based on the partial element equivalent circuit (PEEC) method. Modeling was executed to optimize the parameters in the equivalent circuit of each building block. The validity of the extracted parameters was verified by the predictive modeling for the test structures with different geometry. After that, Monte Carlo analysis and sensitivity analysis were performed based on the extracted parameters. The modeling methodology can allow a device designer to improve the yield and to save time and cost for the design and manufacturing of devices.

  • PDF

Time Domain Identification of an Interval System and Some Extremal Properties

  • Youngtae Woo;Taeshin Cho;Park, Sunwook;Kim, Youngchol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.123-128
    • /
    • 1998
  • This paper presents time domain identification of an interval system. We conjectured that Markov parameters (Pulse Responses) from Kharitonov plants would envelope those of the whole interval system. The examination on interrelations between Markov parameters from Kharitonov plants of an interval system and those of the whole interval system determines the validity of the conjecture and is used to give some extremal properties of Markov parameters. The results of this paper are shown in simulations on MBC500 Magnetic Bearing System and a given interval system.

  • PDF

Optimization of the fuzzy model using the clustering and hybrid algorithms (클러스터링 및 하이브리드 알고리즘을 이용한 퍼지모델의 최적화)

  • Park, Byoung-Jun;Yoon, Ki-Chan;Oh, Sung-Kwun;Jang, Seong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2908-2910
    • /
    • 1999
  • In this paper, a fuzzy model is identified and optimized using the hybrid algorithm and HCM clustering method. Here, the hybrid algorithm is carried out as the structure combined with both a genetic algorithm and the improved complex method. The one is utilized for determining the initial parameters of membership function, the other for obtaining the fine parameters of membership function. HCM clustering algorithm is used to determine the confined region of initial parameters and also to avoid overflow phenomenon during auto-tuning of hybrid algorithm. And the standard least square method is used for the identification of optimum consequence parameters of fuzzy model. Two numerical examples are shown to evaluate the performance of the proposed model.

  • PDF

Parameter Extraction and Simulation in order to Manufacture Ready-made Ear Shell for CIC Type Hearing Aids (CIC형 보청기용 범용 이어쉘 제작을 위한 파라미터 추출 및 시뮬레이션)

  • U, Erdenebayar.;Jeon, Y.Y.;Park, G.S.;Song, Y.R.;Lee, S.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.321-327
    • /
    • 2010
  • Most of the ear shells of hearing aids are manufactured manually, and it is one of the reasons that the cost of the custom-made hearing aids can be increased. Thus it is required to manufacture the ready-made ear shell for the purpose of easy manufacturing and decrease in cost. In this study, we extract parameters in order to manufacture the ready-made ear shell for CIC type hearing aids and simulate to reconstruct the ear shell using the extracted parameters. To parameter extraction, we set up the eleven parameters for the ready-made ear shell based on anatomical characteristics of the ear canal, and we found values of the parameters from twenty-one impressions in their 20s and twelve impressions in their 60s using aperture detection and feature detection algorithms. Classifying the parameters by size, we also determine the parameters of ready-made ear shell into three types for people in their 20s and two types for people in their 60s. Each ready-made ear shell was simulated to reconstruct using figured parameters, and evaluated the rate of agreement with unused impressions for setting parameters. To evaluate the ready-made ear shell, we calculate the volume ratio and intersection between of the each impression and ready-made ear shell, and the intersection ratio using the intersection volume and ready-made ear shell volume. As a result, the volume ratio was about 70%, and volume match ratio was also up to 70%. It means that the ready-made ear shell we simulated is the significantly matched to impression.

Design of SOI CMOS image sensors using a nano-wire MOSFET-structure photodetector (나노 와이어 MOSFET 구조의 광검출기를 가지는 SOI CMOS 이미지 센서의 픽셀 설계)

  • Do, Mi-Young;Shin, Young-Shik;Lee, Sung-Ho;Park, Jae-Hyoun;Seo, Sang-Ho;Shin, Jang-Kyoo;Kim, Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.387-394
    • /
    • 2005
  • In order to design SOI CMOS image sensors, SOI MOSFET model parameters were extracted using the equation of bulk MOSFET model parameters and were optimized using SPICE level 2. Simulated I-V characteristics of the SOI NMOSFET using the extracted model parameters were compared to the experimental I-V characteristics of the fabricated SOI NMOSFET. The simulation results agreed well with experimental results. A unit pixel for SOI CMOS image sensors was designed and was simulated for the PPS, APS, and logarithmic circuit using the extracted model parameters. In these CMOS image sensors, a nano-wire MOSFET photodetector was used. The output voltage levels of the PPS and APS are well-defined as the photocurrent varied. It is confirmed that SOI CMOS image sensors are faster than bulk CMOS image sensors.

Development of the ANN for the Estimation of Earth Parameter and Equivalent Resistivity

  • Ji Pyeong-Shik;Lee Jong-Pil;Shin Kwan-Woo;Lim Jae-Yoon;Kim Sung-Soo
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.350-356
    • /
    • 2005
  • Earth equipments are essential to protect humans and other types of equipment from abnormal conditions. Earth resistance and potential must be restricted within a low value. An estimation algorithm of earth parameters and equivalent resistivity is introduced to calculate reliable earth resistance in this research. The proposed algorithm is based on the relationship between apparent resistances and earth parameters. The proposed algorithm, which approximates the non-linear characteristics of earth by using the Artificial Neural Network (ANN), estimates the earth parameters and equivalent resistivity. The effectiveness of the proposed method is verified with case studies.

Dynamic response analysis of closed loop control system for intelligent truss structures based on probability

  • Gao, W.;Chen, J.J.;Ma, H.B.;Ma, X.S.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2003
  • The dynamic response analysis of closed loop control system based on probability for the intelligent truss structures with random parameters is presented. The expressions of numerical characteristics of structural dynamic response of closed loop control system are derived by means of the mode superposition method, in which the randomness of physical parameters of structural materials, geometric dimensions of active bars and passive bars, applied loads and control forces are considered simultaneously. The influences of the randomness of them on structural dynamic response are inspected by several engineering examples and some significant conclusions are obtained.

An Accurate Small Signal Modeling of Cylindrical/Surrounded Gate MOSFET for High Frequency Applications

  • Ghosh, Pujarini;Haldar, Subhasis;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.377-387
    • /
    • 2012
  • An intrinsic small signal equivalent circuit model of Cylindrical/Surrounded gate MOSFET is proposed. Admittance parameters of the device are extracted from circuit analysis and intrinsic circuit elements are presented in terms of real and imaginary parts of the admittance parameters. S parameters are then evaluated and justified with the simulated data extracted from 3D device simulation.

Frequency-Variant Power and Ground Plane Model for Electronic Package (패키지의 주파수 의존형 파워 및 그라운드 평판 모델)

  • 이동훈;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.385-388
    • /
    • 1999
  • A new frequency-variant equivalent circuit model of power/ground plane is presented. The equivalent circuit is modeled with grid cells. The circuit parameters of each cell were extracted by using Fasthenry. To verify the developed circuit model, its s-parameters are compared with the measured s-parameters 〔2〕 and the full-wave simulation-based s-parameters. Consequently, it is shown that our frequency-variant equivalent circuit model can accurately predict imperfect ground effects under the high frequency operation of electronic package.

  • PDF

Study on the Thermal Transient Response of TSV Considering the Effect of Electronic-Thermal Coupling

  • Li, Chunquan;Zou, Meng-Qiang;Shang, Yuling;Zhang, Ming
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.356-364
    • /
    • 2015
  • The transmission performance of TSV considering the effect of electronic-thermal coupling is an new challenge in three dimension integrated circuit. This paper presents the thermal equivalent circuit (TEC) model of the TSV, and discussed the thermal equivalent parameters for TSV. Si layer is equivalent to transmission line according to its thermal characteristic. Thermal transient response (TTR) of TSV considering electronic-thermal coupling effects are proposed, iteration flow electronic-thermal coupling for TSV is analyzed. Furthermore, the influences of TTR are investigated with the non-coupling and considering coupling for TSV. Finally, the relationship among temperature, thickness of $SiO_2$, radius of via and frequency of excitation source are addressed, which are verified by the simulation.