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Development of the ANN for the Estimation of Earth Parameter
and Equivalent Resistivity

Pyeong-Shik Jit , Jong-Pil Lee*, Kwan-Woo Shin**, Jae-Yoon Lim*** and Sung-Soo Kim****

Abstract - Earth equipments are essential to protect humans and other types of equipment from
abnormal conditions. Earth resistance and potential must be restricted within a low value. An
estimation algorithm of earth parameters and equivalent resistivity is introduced to calculate reliable
earth resistance in this research. The proposed algorithm is based on the relationship between apparent
resistances and earth parameters. The proposed algorithm, which approximates the non-linear
characteristics of earth by using the Artificial Neural Network (ANN), estimates the earth parameters
and equivalent resistivity. The effectiveness of the proposed method is verified with case studies.
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1. Introduction

Earth equipments are essential to prevent the occurrence
of an accident to humans or other types of equipment from
abnormal conditions. When an unbalanced fault occurs,
some fault currents flow down to earth through earth
equipment. Therefore, electric potential around electrodes
may arise. Hence, earth resistance and potential must be
restricted within low value. The earth resistance varies
according to the size and material of the electrode and the
soil conditions. In particular, earth resistivity has great
influence on earth resistance [1, 2]. The reliable estimation
of structures and resistivity of the earth is essential when
creating a viable plan. However, exact measurement is
difficult because earth resistivity can be influenced by
uncertain factors such as temperature, humidity, and etc.

In traditional methods, the earth structure is assumed to
be in horizontal layer with several earth parameters, and
then earth parameters and equivalent resistivity are
estimated using apparent resistances. Structures are
determined by an expert and earth parameters are estimated
by the optimization method using apparent resistances
measured by Wenner’s method [3, 4]. Traditional estima-
tion methods can be divided into the graphic method and
the numerical method. The graphic method involves
estimation by an expert. Its result is varied by the ability of
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expert or repeat calculation. Thus, it is hard to estimate the
parameters precisely. The numerical method requires
special techniques such as optimizing theory, and
numerous calculations, whose results can be varied with
initial values. Computer programs, which are a type of
numerical method, are also sensitive to initial values [5, 6].

On considerations for non-linear characteristics of earth,
artificial neural networks are induced to classify the
structures and to estimate earth resistivities. The proposed
algorithm can classify complex structures and estimate
earth parameters that vary according to the ability of expert,
complex numerous calculation, initial value problem, and
so on [7, 8]. Recent researches have shown the possibility
of Artificial Neural Networks(ANNs) [9-12].

In this paper, the estimation algorithm of the earth
parameter and the equivalent resistivity using ANNs is
presented. Self-Organizing Map(SOM) neural network is
used to classify structures of soil and then the Multi-
Layered Perceptron(MLP) neural networks are used to
estimate earth parameters and resistivity.

In this research, using ANNs to earth modeling provides
precise estimation of earth parameters and equivalent
resistivity without a complex process. When input data are
available, the reliable estimation of earth parameters and
equivalent resistivity can be achieved. The effectiveness of
the proposed method is verified with case studies.

2. Proposed Methods for Earth Parameters
and Equivalent Resistivity Estimation

2.1 Overview

In traditional methods, earth parameters and equivalent
resistivity are estimated using apparent resistances. Struc-
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tures are determined according to an expert, and then earth
parameters are estimated by the optimization method.

In this research, earth structures are classified by SOM,
which has excellent performance for pattern classification.
There is a non-linear relationship between apparent resis-
tance and carth parameters, and therefore earth parameters
are estimated by MLP, which is famous as a non-linear
function approximator.

Fig. 1 shows the procedure of this research. Actual
p—a data are acquired by field testing with Wenner’s

method. Earth parameters and equivalent resistivities are
calculated by numerical method using computer-aided
programs. Acquired data are divided into two groups for
training and verification.

The ANNS are trained using a training data set. At first,
structures of earth are classified using a SOM, and then
MLP networks for carth parameters and equivalent
resistivity estimation are trained respectively based on the
result of structure classification. Verification data are used
to test the accuracy of the ANNG.

Numerical
Opiimizing Parameters

Mathematical
Calculation

Resistivity

Earth
Parameters

ANNs for
Eatth Parameter

gg\f;for[ Equivalent
valent = —
Resistivity Resistivity

bmmmmmm - Proposed Method -----~-~--~-~ !
Fig. 1 Overview of proposed method

2.2 Structure Classification

Training data of SOM, apparent resistances acquired by
field testing using Wenner's method, are classified into
several data sets according to structures of earth by SOM.

Fig. 2 shows the concept of p—a curve in the 2nd

layered earth. p, denotes apparent resistivity measured
using Wenner's method. The spell, ¢ and d indicate
electrode separation and depth of first layer, respectively.
When ¢ is smaller than d, apparent resistivity incline to
resistivity of first layer p,, and p, tends to p, in the
opposite case. The 2nd layer structure can be classified by
valuesof p; and p,.

The right side of Fig. 2 illustrates variation of apparent
resistances for p; and p, values.

To estimate earth parameters of a particular location,
apparent resistances arc needed. A set of apparent

resistance constructs an input pattern of ANNs. Trained
SOM classify earth structures by input pattern, and then

MLP network, which combine with the input data to
determine earth parameters.

a
> A p

RN

EY

N\ e

a
Fig. 2 Concept of the 2nd layer structure of earth

The SOM can be thought of as a nonlinear projection of
the input pattern on the neuron array that represents the
features of input patterns. The projection makes the
topological neighborhood relationship geometrically
explicit in low dimensional feature space.

The SOM consists of an input layer of neurons in a line
and output layer constructed by neurons in a two-
dimensional grid as shown in Fig. 3.

The SOM first determines the winning neuron in the
competitive layer. Next, the weight vectors for all neurons
within a certain neighborhood of the winning neuron are
updated using the Kohonen rule.

SOM is implemented for the topological mapping from
the multi-dimensional pattern of apparent resistances onto
a two-dimensional plane. When the learning process is
finished, mapping on identical neurons means that input
patterns are equivalent and mapping on neighbor neurons
means that input patterns are comparable to each other.
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Fig. 3 Self-Organizing Feature Map

2.3 Earth parameters and resistivity estimation

Earth parameters and resistivity can be estimated using
MLP. The training concept of ANNs for earth parameter
estimation is illustrated in Fig. 4 as a block diagram.
Apparent resistances were used for the input of each ANN,
and earth parameters calculated by CDEGS were used for
target values. Outputs of MLP are¢ compared with target
value, and then sum-squired error is used to adjust the
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weight. During the learning process of the ANN, the
weights are updated to minimize error. Training of MLP is
based on the error back-propagation algorithm.
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Fig. 4 Earth parameter estimation with ANNs
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Generally, structure of the MLP is constructed of more
than three layers; input, output, and hidden layer. But, the
precise method for structure determination has not yet been
presented. Therefore, it is constructed by trial and error.
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Fig. S Multi-layer perceptron

Fig. S presents the concept of MLP. At the input layer,
each neuron's output is simply equal to its input. In the
hidden and output layers, each neuron determines its output
by weighted sum and activation function. Each input vector
is passed forward through the network, and an output
vector is calculated by (1).

=f° (W"ah+b )

ol r(w ( "o +b ) M

Where, a°

a": output of hidden layer,
p: input vector (tho-a data),
[ activation function,

W: weight matrix,

b: bias.

: output of MLP (earth parameters),

The numbers of MLPs for earth parameter estimation are
determined by structures classified by SOM, as are the
MLPs for earth resistivity estimation. Afier training,
accuracy of the MLPs is verified using a verification data
set.

3. Case Study

3.1 Field test data

Input data used in this research are acquired by field
testing. Apparent resistances are measured by SAS-300C
based on Wenner's method [14].

Measuring Line 2

Measuring Line 1

Substation Site

L

Fig. 6 Example of measuring plan for earth resistivity

As indicated in Fig. 6, field testing is performed through
measuring lines at a substation site. Measuring lines are
selected as orthogonal to each other as possible to obtain
uniform apparent resistances. Earth parameters, which used
to target data of the ANNS, are calculated using CDEGS.

500 data sets were achieved and 400 of these were used
for training. 100 data sets were remained to assist in the
verification process. Tables 1 and 2 show the verification
data, which were selected based on apparent resistance
measured by electrode separations. Table 1 shows the DU
case in which apparent resistance values were increased by
electrode separations and Table 2 shows the UD case.

Table 1 Apparent resistivities by electrode separations
[DU case]

Input data (rtho [m])

Num. -
2[m] |4 [m] |6 [m]|10 [m]{15 [m]]20 [m]| 30 [m]
1 [192.12 | 213.40 | 296.08 | 370.88 | 392.92 | 395.28 | 400.00
2 | 165.08 | 253.96 | 228.56 | 349.20 | 333.32 | 355.72 | 400.00
3 124228 | 301.72 | 359.32 | 400.00 ; 377.16 | 361.16 | 329.16
4 [279.12 | 320.00 | 330.68 [ 355.56 | 400.00 | 379.56 | 338.68
5 [ 160.00 | 240.00 | 320.00 | 360.00 | 392.00 | 396.00 | 400.00
6 133621 | 37345 | 518.14 | 649.04 | 687.61 | 691.74 | 700.00
7 | 288.89 [ 44443 | 399.98 | 611.10 | 583.31 | 622.51 | 700.00
8 142399 | 528.01 | 628.81 | 700.00 | 660.03 | 632.03 | 576.03
9 | 48846 | 560.00 | 578.69 | 622.23 | 700.00 | 664.23 | 592.69
10 | 280.00 | 420.00 | 560.00 | 630.00 | 636.00 | 693.00 | 700.00
11 | 624.39 | 693.55 | 962.26 | 1.2054 | 1.277.0 | 1,284.7 | 1.300.0
12 | 536.51 | 825.37 | 742.82 | 1,134.9 | 1,083.3 | 1,156.1 | 1.300.0
13 [ 78741 | 980.59 | 1,167.8 | 1,300.0 | 1,225.8 | 1,173.8 | 1,069.8
14 1907.14 11,0400 | 1,074.7 | 1,155.6 | 1,300.0 | 1,233.6 | 1,100.7
15 1520.00 | 780.00 | 1,040.0 | 1,170.0 | 1,274.0 | 1,287.0 | 1,300.0

16 [1.200.8 | 1333.8]1.850.5 [ 2.318.0 | 2.455.8 | 2470.5 | 2,500.0
17 11031815873 {14285 21825 |2,083.3 | 2223.3 | 2,500.0
18 115143 ]1,885.8 22458 | 2.500.0 | 2,357.3 | 2257.3 | 2.057.3
19 11.744.5 12,0000 | 2,066.8 | 2.222.3 | 2.,500.0 | 2.372.3 | 2,116.8
20 11,0000 1.500.0 | 2,000.0 | 2.250.0 ] 2.450.0 | 2.475.0 | 2,500.0
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3.2 Structure classification of earth

Generally, initial weights of SOM are set random values
at initial learning, but initial weights are set medial values
of input patterns to increase learning efficiency in this
research. Numbers of iterations are 7,920 (330 input
patterns, neighborhood, 3 repeat). Numbers of neighbor-
hood neurons were determined by maximum Manhattan
distance. Weights were updated using a winner-take-all
algorithm [15].

Table 2 Apparent resistivities by electrode separations
[UD case]

Input data (rho [m])
2[m] | 4 [m] | 6 [m] |10 [m] |15 [m]]20 [m] |30 [m]
400.00 | 256.04 | 15112 | 11244 | 12784 | 11676 | 14144
400.00 | 237.88 | 117.80 | 10840 | 103.04 | 10552 | 12644
40000 | 33000 | 21328 | 14276 | 13088 | 136.00 | 16196
240.00 | 400.00 | 360.00 | 160.00 | 144.00 | 148.00 | 156.00
40000 | 342.84 | 252.84 | 29524 | 300.00 | 29048 | 27144
700.00 | 44807 | 26446 | 19677 | 22372 | 20433 | 247152
700.00 | 41629 | 20615 | 189.70 | 180.32 | 184.66 | 221.27
70000 | 57750 | 37324 | 249.83 | 229.04 | 23800 | 28343
42000 | 700.00 | 630.00 | 280.00 | 252.00 | 259.00 | 273.00
10 70000 | 599.97 | 44247 | 51667 | 525.00 | 50834 | 475.02
11 1,3000 | 83213 | 491.14 | 36543 | 41548 | 37947 | 459.68
12 1,3000 | 773.11 | 382.85 | 35230 | 334.88 | 342.94 | 41093
13 1,300.0 11,072.50 | 693.16 | 463.97 | 42536 | 442.00 | 52637
14 780.00 1,300.00 |1,170.00 | 520.00 | 468.00 | 481.00 | 507.00
15 1,3000 | 11142 | 821.73 | 959.53 | 975.00 | 944.06 | 882.18
16 | 25000 160030 | 944.50 { 70275 | 799.00 | 72975 | 884.00
17 ] 25000 | 1486.8 | 73625 | 67750 | 644.00 | 659.50 | 790.25
18 | 25000 |2,062.50 |1,333.00 | 89225 | 818.00 | 850.00 |1,012.30
19 | 1,500.0 |2,500.00 {2,250.00 [1,000.00 | 900.00 | 925.00 | 975.00
20 | 2,500.0 |2,142.80 [1,580.30 |1,845.30 {1,875.00 |1,815.50 |1,696.50

Z
O (00 ~1 O\ [ | W b |— 5

4

21 23

Fig. 7 Earth structure identification results by SO

If neurons of the output layer are set too small, then
input patterns are classified roughly. Thus, neurons of the
output layer were searched from 3x3 to 10x10 for
reasonable structure. Initial learning rate was set at 0.02

and decreased during the learning process. 330 input
patterns are used in the SOM training.

Classification results are overlapped when SOM has
3x3 and 4x4 neurons of output layer and scattered
when SOM has over 6x6 neurons of output layer.
Therefore, 5x5 neurons are selected in this research, and
results are indicated in Fig. 7. Fig. 8 shows examples of
classified patterns.

3.3 Estimation of earth parameters

MLPs for earth parameter estimation are constructed
based on the result of SOM classification. Because
performance of the MLP can be varied by number of
hidden neurons, results of variation are analyzed from 10
to 30 neurons in this rescarch. Neurons of hidden layer are
determined to be 25 by analyses. Input and output neurons
of MLP were 7 and 3 neurons, respectively. Initial learning
rate and momentum were 0.1 and 0.85, respectively.
Maximum iteration is 10,000 at the learning stage.
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Fig. 8 Examples of classified p, curves

At the verification stage, outputs of MLP are compared
with results of CDEGS. Tables 3 and 4 show the
comparison results. Errors of Tables 3 and 4 are calculated
by average of absolute error as indicated in (2).

15|t —c
E - 1 14
“ n lz:ll t;

x100 2)

Where, ¢, :
Number of data

As shown in Tables 3 and 4, average estimation errors of
earth parameters result in 0.79, 0.14, and 1.35[%] in the
DU case and 0.13, 0.08, and 0.99{%] in the UD case.
Results of MLP were almost reasonable, but maximum
error of h was 13[%]. This result is regarded as an

electrode separations problem.

Target value, ¢, : Output of MLP, » :

i
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Table 3 Estimation results of earth parameter by ANN
[DU case]
Target Values Computed Values Error [%]

0[R2 | ko [QNp AR B | oy | 02|k [m]
168.36 |449.77|2.60| 168.04 | 450.40 |12.59(0.19 | 0.14 | 0.48
150.49 |408.58|2.45| 150.00 | 408.08 {2.45/0.320.12,0.16
201.101374.74/1.30/201.04 | 374.44 (1.31]0.03|0.07 | 0.79
256.98(375.23{1.79|258.52 | 375.47 (1.84/ 0.59 | 0.06 | 2.66
107.60 1439.03|1.33| 106.85 | 438.75 |1.32/ 0.69 | 0.06 | 0.61
294.17 {786.65|2.59|294.07 | 788.2012.59( 0.03 | 0.19 | 0.09
263.72|715.4312.46|262.50|714.15|2.45/0.46 | 0.17 | 0.24

Num|

calculated using sum-squired error as shown in (3).

Eg =in 100 3

Where, ¢;: : Output of MLP, »n :

i

Number of data

Target value, c;

Table 5 Estimation result errors of earth resistivity as
hidden neurons

351.79 |655.55|1.30/351.82 | 655.27 |1.31/0.00 | 0.04 [ 0.79
453.55(657.10|1.85/452.40 | 657.08 {1.84/0.250.00 | 0.66
10 | 188.52]767.83/1.33| 186.98 | 767.82(1.32] 0.8 | 0.00|0.61
11 |546.8211461.6,2.60| 546.12 |1463.80|2.59|0.12 | 0.14 | 0.48
12 1488.971327.9|2.45|487.50 |1326.30|2.45/ 0.300.12 | 0.16
13 |653.57|1217.9|1.30/653.37 1216.90{1.31,0.03 | 0.07 | 0.79
14 |838.4211219.2|1.82| 840.18 {1220.30{1.84/0.20| 0.08 | 0.97
15 |385.30]1437.2|1.52|347.26 |1425.90[1.32|9.87 | 0.78 |13.03
16 (1052.20/2810.9/2.60(1050.202815.00[2.59| 0.18 | 0.14 | 0.48
17 1939.0912552.9/2.44| 937.50 [2550.50[2.45| 0.16 | 0.09 | 0.57
18 |1257.90[2344.1]1.31,1256.50[2340.30{1.3110.11 | 0.16 | 0.02
19 |1628.80/2346.81.89|1615.7012346.70{1.84| 0.80 | 0.00 | 2.76
20 [672.882733.9|1.33| 667.80 2742.20{1.32| 0.75|0.30 | 0.61

\O (00 |0 |ON [ [ W2 [N ==

Table 4 Estimation results of earth parameter by ANN
[UD case]
Target Values | Computed Values Error [%)]

O | P2|him]y P1 | P2 |h[m]| P1 | P2 |h[m]

451.1|115.0] 2.17 |1452.7|115.0{ 2.11 | 0.34 | 0.00 [ 2.55
493.31102.3| 1.87 |492.41102.3| 1.90 | 0.17 | 0.02 | 1.66
486.3|128.6] 2.58 |485.5|128.9| 2.60 | 0.15 | 0.21 [ 0.68
294.9|134.6| 4.72 [294.9|134.7| 4.72 | 0.01 | 0.04 | 0.08
312.6]258.2|110.441312.6{257.8|10.44 0.00 | 0.14 | 0.00
789.51201.2| 2.17 |792.21201.2| 2.11 | 0.34 | 0.00 | 2.55
863.4/179.0]| 1.87 [861.8|179.0| 1.90 | 0.17 | 0.01 | 1.66
851.01225.1] 2.58 [849.7|225.6| 2.60 | 0.15 | 0.21 [0.68
516.11235.6)| 4.72 [516.1]235.7] 4.72 | 0.01 | 0.04 | 0.08
10 |547.1{451.8]10.44|547.1{451.2{10.44| 0.00 | 0.13 | 0.00
11 11466.{373.7] 2.17 |1471.1373.8{ 2.11 | 0.34 [ 0.00 | 2.55
12 11603.{332.5]| 1.87 |1600.]332.5] 1.90 | 0.17 [ 0.02 | 1.66
13 [1580.{418.1] 2.58 |1578.{419.0] 2.60 | 0.15 | 0.21 | 0.68
14 [958.5|437.5| 4.72 1958.6{437.7| 4.72 | 0.01 | 0.04 | 0.08
15 ]1016.{839.1{10.44]|1016.(838.0{10.44| 0.00 | 0.13 | 0.00
16 2819./718.8] 2.17 |2829.|718.8] 2.11 | 0.34 | 0.00 | 2.55
17 13083./639.4]| 1.87 |3078.{639.5| 1.90 | 0.17 | 0.02 | 1.66
18 13039.1804.0] 2.58 |3034.[{805.8{ 2.60 | 0.16 [ 0.22 | 0.68
19 |1843.{841.4]| 4.72 |1843.{841.8{ 4.72 | 0.01 [ 0.04 | 0.08
20 |1954.11613.110.44{1954.11611./10.44| 0.00 | 0.14 {1 0.00

Num

\O |00 [~ [ON LA [ W N =

3.4 Equivalent resistivity estimation

In training MLPs for equivalent resistivity estimation,
the number of hidden neurons also has influence over the
performance of MLP. 10 to 25 hidden neurons were
analyzed in this research to find an adaptable network.
Initial conditions were 0.1 learning rate, 0.85 momentum,
and 10,000 maximum iterations. Analysis results are
shown in Table 5 at cach case. Errors of MLPs were

Number of hidden neurons Sum-squired error[%]
10 0.0565
15 0.1810
18 ‘ 0.0033
20 0.0040
25 0.0080

Table 5 presents variations of estimation error to change
of hidden neurons. The number of hidden neurons was
selected to be 18 neurons based on this result.

Verification results of equivalent resistivity estimation
were summarized in Table 6. Maximum and average errors
are 0.196[%] and 0.120[%] in the DU case, and 1.533[%]
and 0.591[%] in the UD case. Figs. 9 and 10 illustrate
results of the equivalent resistivity estimation.
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Fig. 9 Estimation results of earth resistivity by ANN
[DU case]
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Fig. 10 Estimation results of earth resistivity by ANN
[UD case]
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Table 6 Estimation results of earth resistivitics by ANN

DU Case UD Case
Target |Comput| Error | Target |[Compute| Error
value [ed value| [%] value | d value [%]
1 392.84 | 392.57 | 0.0687 | 121.54 | 122.60 | 0.8750
2 358.44 | 357.86 | 0.1618 | 107.64 | 105.99 | 1.5320
3 361.18 | 360.79 | 0.1080 | 137.35 | 136.85 | 0.3673
4 365.23 | 364.96 | 0.0739 | 147.24 | 147.07 | 0.1157
5 386.18 | 386.94 { 0.1968 | 274.87 | 274.68 | 0.0689
6 687.31 | 686.96 | 0.0509 | 212.70 | 214.56 | 0.8728
7 627.48 | 626.28 | 0.1912 | 188.37 | 185.48 | 1.5320
8 631.89 | 631.36 | 0.0839 | 240.37 | 239.48 | 0.3703
9 639.42 | 638.89 | 0.0829 | 257.67 | 257.37 | 0.1157
10 | 675.52 167692 | 0.2072 | 481.02 | 480.69 | 0.0684
11 [1276.70|1275.80| 0.0705 | 395.02 | 398.46 | 0.8714
12 |1164.90[1163.00] 0.1631 | 349.83 | 344.47 | 1.5320
13 |1173.80[1172.60| 0.1022 | 446.40 | 444.75 | 0.3700
14 [1186.60|1185.80] 0.0674 | 478.53 | 477.98 | 0.1157
15 [1262.70|1263.20| 0.0396 | 893.32 | 892.71 | 0.0682
16 12455.20(2453.50| 0.0692 | 759.65 | 766.27 | 0.8719
17 12239.60(2235.90| 0.1652 | 672.76 | 662.44 | 1.5334
18 12259.00)2255.20] 0.1682 | 858.39 | 855.28 | 0.3621
19 2283.30(2281.70| 0.0701 | 920.24 | 919.18 | 0.1147
20 [2407.30{2413.70| 0.2659 |1717.92|1716.75| 0.0680
Average) - | enes |- T
error

4. Conclusion

An estimation algorithm of earth parameters and
equivalent resistivity is introduced in this research. The
proposed algorithm is based on the relationship between
apparent resistivities and earth parameters. This method is
easier than traditional complex processes by using ANN,
which approximates the non-linear characteristics of earth.
Results of this research can be summarized as follows. The
structure classification method using SOM was introduced,
and the results of classification were shown. Earth
parameter estimation was performed using MLPs. The
estimation errors of earth parameters result in 0.79, 0.14,
and 1.35[%] in the DU case and 0.13, 0.08, and 0.99[%)]
error in the UD case. MLPs for equivalent resistivity
estimation were constructed by 7-input neurons, 18-hidden
neurons, and 1 output neuron. Estimation errors were
0.120[%] and 0.591]%] in each case.

The proposed method integrates the advantages of the
graphic method and numerical method with artificial neural
networks. It has some advantages in that less time is
required with improved precision and more reliability.
Constraints of this research are constructed from the layers
of earth, the electrode separation and the equivalent earth
depth. For more adaptivity and reliability, a more reliable
field test method and various separation data are needed.

Acknowledgements

This work was supported by Korea Research Foundation
Grant (KRF-2004-041-D00273).

References

111 G.F. Tagg, Earth Resistances, 1964.

[2] O. H. Gish, W. J. Rooney, “Measurement of
Resistivity of Large Masses of Undisturbed Earth,”
Terrestrial Magnetism and Atmospheric Electricity,
Vol. 30, pp. 161.

[3] E. Lancaster-Jones, “The Earth-Resistivity Method of
Electrical Prospecting,” The Mining Magazine, June
1930.

[4] F. Dawalibi, C. J. Blattner, “Earth Resistivity
Measurement Interpretation Technique,” IEEE PAS,
Vol. 103. No. 2, pp. 374-382, Feb. 1984,

[51 . L. del Alamo, “A Comparison Among Eight
Different Techniques to Achieve an Optimum
Estimation of Electrical Grounding Parameters in
Two-Layered Earth,” IEEE Trans. on Power Delivery,
Vol. 8, No. 4, pp. 1890-1899, Oct. 1993.

[6] T. Takahashi, T. Kawase, “Analysis of Apparent
Resistivity in a Multi-Layer Earth Structure,” IEEE
Trans. on Power Delivery, Vol. 5, No. 2, pp.
604 ~612, 1990.

[7]1 Hans R. Seedher, J.K. Arora, “Estimation of Two
Layer Soil Parameters Using Finite Wenner
Resistivity Expressions,” IEEE Trans. on Power
Delivery, Vol. 7, No. 3, pp. 1,213~ 1,217, 1992.

[8] SES (Safe Engineering Services & Technologies
Ltd.), CDEGS (Current Distribution, Electromagnetic
Fields, Grounding and Soil Structure Analysis)
Manual, Version 2.5.3, 1995.

[9] P.SJi et al, “Earth Resistivity Estimation Using
Artificial Neural Network,” ICEE '98, Vol. 2, pp.
469-472, July, 1998.

[10] Ryu Bo-hyuk, Wee Won-Seok, Kim Jung-Hoon, “A
Study on Methodology of Soil Resistivity Estimation
Using the BP,” Trans. KIEE, Vol. 51A, No. 2, pp. 76-
82, Feb., 2002.

[11] J.P. Lee, P.S. Ji, and J.Y. Lim, “Estimation of Earth
Parameters Using Neural Network,” KIEE and IEEK
Joint Fall Con. 2003 for Chungbuk Branch, Vol. 2,
pp- 71-74, Nov, 2003.

[12] J.P. Lee, P.S. Ji, and J.Y. Lim, “Earth Structure
Modeling Using Neural Network,” KIEE Summer
Annual Conference 2004, pp. 569-571, July, 2004.

[13] Jer-Nan Juang, Applied System Identification, Pren-
tice Hall, Inc.pp. 3-14, 1994.

[14] ABEM Terrameter SAS-300C Catalogue.



356 Development of the ANN for the Estimation of Earth Parameter and Equivalent Resistivity

[15] Martin T. Hagan, Howard B. Demuch, and Mark
Beale, Neural Network Design, Thomson Learning,
pp. 14-1~15, 1996.

Pyeong-Shik Ji

He received his M.S. and Ph.D.
degrees in Electrical Engineering from
Chungbuk National University in 1994
and 1998, respectively. He is presently
a Professor of Electrical Engineering
at Chungju National University. Prof.
Ji’s interests include load modeling,
load forecasting, diagnosis and artificial intelligence, etc.

Jong-Pil Lee

He received his B.S. and M.S. degrees
in Electrical Engineering from Chung-
buk National University in 1996 and
1999, respectively. He is currently
pursuing his Ph.D. in the field of
Signal Processing at Chungbuk Natio-
nal University. His recent focus invol-
ves artificial intelligence and modeling.

LA

Kwan-Woo Shin

He received his M.S. and Ph.D. de-
grees in Electrical Engineering from
Kongju National University in 1998
and 2003, respectively.

He is presently a Professor with the
Human Resource Development Team
for Information Technology, Kongju
National University. '

Jae-Yoon Lim

He received his B.S. and M.S. degrees
in Electrical Engineering from Chung-
buk National University in 1984 and
1986, respectively, and his Ph.D. from
Hongik University in 1995. He served
as a Visiting Scholar at Texas A&M
University during 1999-00. He is
presently a Professor of Electrical Engineering at Daeduk
College, Daejeon Korea. Prof. Lim’s interests include load
modeling, load forecasting, diagnosis and artificial
intelligence, etc.

Sung-Soo Kim

He received his M.S. degree in Elec-
trical Engineering from the University
of Arkansas-Fayetteville in 1989 and
his Ph.D. from the University of
Central Florida in 1997. He is presently
a Professor of Electrical Engineering at
Chungbuk National University. Prof.
Kim’s interests include signal processing, communication
theory, and artificial intelligence.




