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Abstract

This paper presents time domain identification of an interval
system. We conjectured that Markov parameters (Pulse
Responses) from Kharitonov plants would envelope those of
the whole interval system. The examination on interrelations
between Markov parameters from Kharitonov plants of an
interval system and those of the whole interval system
determines the validity of the conjecture and is used to give
some extremal properties of Markov parameters. The results
of this paper are shown in simulations on MBC500
Magnetic Bearing System and a given interval system.
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1. Introduction

It is natural to try to model a family of uncertain systems
using the interval framework, since obtaining a very accurate
mathematical description of a system is usually impossible
and very costly. A recent trend in the area of system
identification is an attempt to model the system uncertainties
to fit the available and design tools of robust control The
interval transfer function is interpreted as a family of
transfer function whose coefficients are bounded by some
known intervals and centered at the nominal values. But, in

many cases this is unnatural in the sense that physical
parameter perturbations do not correspond to transfer
function coefficients [9]. A major motivation for this paper is
the challenge posed by the interval system modeling. In this

paper, we have three main objectives in view of time domain
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identification of an interval system and extremal properties :
1) to present the efficiency of ERA(Eigensystem Realization
Algorithm) as one of the identification algorithms(A-1,
section 4). After confirming the result from simulations, we
apply ERA to real data obtained from MBC500 Magnetic
Bearing System(A-2, section 4), 2) to examine whether the
bound of Markov parameters derived in Kharitonov plants
involve the envelope of any parameters in interval or not(B,
section 4). This effort leads to the results that the bound
between the 16 different trajectories of Markov parameters
based on Kharitonov plants can’t involve arbitrary
coefficients in interval system, 3) to investigate the relation-
ship between the characteristics of Markov parameters in
time history and the step responses of Kharitonov plants(C,
section 4). In section 2, the theoretical background used for
identifying a model is introduced. In section 3, problem
formulation is described. And Simulation results are shown
in section 4. Finally, Conclusions are described in section 5.

2. Theoretical background

Consider the discrete linear time invariant system described
by
x(k +1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) M
where x(k)is an nx 1 vector, y(k) an mx 1 vector, and
u(k)is an rx 1 vector with 4, B,C and D being system
matrices with appropriate dimensions. Assuming zero initial
conditions, the set for a sequence of k£ =0,1,---,/-1 can be

written as
1-1

(-1 = AT Bu( -1-1),
,Z;f )
1-1

yd-1) = > CA™'Bu(l-1-i)+Du(l-1)

i=l



Eq. (2) can be assembled into Markov parameters(a
sequence of pulse-response) matrix Y& with dimension m by
r as follows:

Y, =D, Y¥,=CB, ¥, =CAB, -, ¥, =CA*"B 3)
Eq. (3) can be grouped in a matrix from to yield

yo =1, U, @
where

Vi =[Yo N Y2 "'}’1-1]
Y, =[D CB C4B -- CA”B]

u(0) u(l) u(2) - u( -1 (5)
u(0) u(l) - u(l -2)
U, = u(0) --- ul-3)
. u(.0)

Consider the case where A is asymptotically stable so that
for some sufficiently large p, 4*~0 for all time steps
k> p. Eq. (4) can then be approximated by 6)
yp = L Up
where
ve =@ y® y@ - y(p) - 0 -D]
Y, =|p B ca - car2p]

w(© 5@ 4@ — up) - ul-n] P
w(®) u(l) - u(p-1) - ul-2)
Up= u(0) --- u(p-2) --- u(l-3)
W - ud-p-D)

In this procedure, ERA (Eigensystem Realization algorithm)
based on Markov parameters can then be effectively applied
to the problem of system identification. It includes the
original minimal realization approach of Ho and Kalman([7],
and the following steps.

Stepl) Form a block data matrix which is obtained by
deleting some rows and columns of the generalized Hankel
matrix composed of the Markov parameters as follows :

Yk Yk+1 Yk+ﬂ—1
H(k-1)= l.c+l 'k+2 . ) [ ®
Yk+a—1 Yk+a Yk+a+p—2

Then, construct a block Hankel matrix H(0) by arranging
the Makov parameters into blocks with given o, S.

Step2) Decompose H(0) using singular value decomposition.

2, 0
H(0)=R=ST =[R, :Ro][o2 5 ][S2 8,1 ©)]
0
Step3) Determine the order of the system by examining the
singular values of the Hankel matrix H(0) .

Step4) Construct a minimum order realization Lfl,é,é]
using a shifted block Hankel matrix H(1).

A =3;"2RI HW)S, ;'
é =32¢Tp
¢ =EIR 3V
It is defined that El =[1, 0, ---0,] where m is the
number of outputs, and E7 =[I, O, ---0,] where r is the

(10)

number of inputs, O; as a null matrix of order i, I, as an

identity matrix of order i.
Step5) Convert the estimated discrete state-space model to
the continuous transfer function

3. Problem Formulation

Consider an interval system,
N(s) _b,s" +b, 5"+ +bis+b,

D(s) a,s" +a,s"+-+as+ag

G(s) = an

where
aieb,- afli=l,2,---,m N bie[IJi‘ bi"]»f=1,2,"',n.

For the linear interval system where the uncertain
parameters lie in intervals and appear linearly in the
numerator and denominator coefficients of the transfer
functions , it is known that, by the Generalized Kharitonov
theorem, a set of plants which are the combinations of the
Kharitonov polynomials in interval system characterize the
frequency domain behavior of linear interval system [9].
Therefore, each Kharitonov polynomial of numerator and
denominator is

K} =a,s" +a, ;s" +al st val 5" 4

K}, =a}ts™ +a,“;_1s"'_l +a,;_2s’"—2 +a,;_3s'"_3 +-e- 12
K3 =als" +a, 45" +as 5" +at s 4

Ky =as" +af "V +al 5™ va, 5"+

Ky =bys" +b, s +b) 55" +b} "3 4

Ky =bls" 45 s" b7 ,5" 2 +b, 45" 13)

+
Ky =brs" +b 5" +b, 58" b} "2 4.
Ky =bys" +b}s"  +b7 05" +b 5" +
From eq. (12) and eq. (13), 16 Kharitonov plants can be
derived as follows;
G,(s) =22
Kp
From eq(14), we can conjecture that Markov parameters
estimated by ERA from the 16 plants of interval system
would envelope Markov parameters of the whole interval
system. It would be of use to find extremal properties
between the characteristics of Markov parameters and the
step responses of interval system. As a counterexample to
examine the validity of the conjecture, an interval system
can be considered. In this procedure, it needs an evaluation

i=1234;=1234v=12,,16 14
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about the efficiency of ERA and examination of the bound of
Markov parameters derived from Kharitonov plants. In the
following section, the results are shown through several
examples.

4. Simulation Results
A-1) Example 1: The efficiency of ERA

To evaluate the efficiency of the ERA estimation method, we

Consider a given linear time invariant model whose

coefficients are fixed,
Input

uit) —p

Output
—» )

G(s)
Fig.1 Block diagram of a given model

The given linear time invariant model in fig. 1 is,
17.7223s% + 255 +14.8112
G =——7 2
5T +7s” +17.72235° + 255 +14.8112

5)

As in Fig2, the excited input signal data and the output
signal data, the response of the given system, are used. The
specification of these signals is as follows;

- u(£):1023 x1 Input vector (PRBS)

- y(£):1023 x1 Output vector

- Sampling time : 0.05 sec

- Frequency bandwidth of input signal : 107'Hz ~10? Hz
- Excitation time : 51.1 sec

By eq. (6) and (7), Markov parameters derived from the
input/output data are shown in fig. 3. The number of Markov
parameters used in this simulation is 301.

The coefficients of model estimated by eq. (8), (9), (10) from
Markov parameters are compared with those of the given
model. The order of the estimated model is the same of the
given model.

Input Signal

Magnitude

Time(secs)
Outy signal

Magnitude

35 40 45

15

Dj 5 10 20 30

Time(secs)

Fig.2 Input / Output signal
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Fig.4 Comparison of step response between the Given Model
and the Estimated Model

Table. 1 Comparison of coefficients between the given model
and the estimated model

Given Model Estimated Model

a, 1 1

a3 7 7.0302
a, 17.7223 17.5875
a 25 25.5119
a, 14.8112 15.5577
b, 17.7223 16.6482
by 25 25.3336
b, 14.8112 15.4539

Fig. 4 and Table.1 show that ERA estimates the given model
with a high accuracy.

A-2) Example 2: The application of ERA to Magnetic
Bearing System

As a practical case of identifying an unknown system, we
experimented with Magnetic Bearing System which operates
stably. In this simulation, a closed-loop system is considered.
And the structure of this system is represented in fig. 5.



G(s)

t
u(t)- (i )’

» P

Cis)

Fig.5 Block Diagram of Magnetic Bearing System

In fig. 6, the input signal and output signal used in this
simulation are shown. The specification of these signals in
this experiment is as follows;

- u(t):50002x1 Input vector (PRBS)

- y(t):50002x1 Output vector

- Sampling time : 0.0001 sec

- Frequency bandwidth of input signal : 10Hz ~10kHz

- Excitation time : 5 sec
And, 2000 Markov parameters derived from eq. (6) and (7)
are shown in fig. 7. After examining the singular values of
the Hankel matrix H(0), the minimal order of this system
12, is determined by eq. (8), (9) and (10). The estimated
transfer function of this system is,

Ga ()= G

16)

where,
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Fig.8 Step response of the estimated model

N(s) =-0.002134s" + 60.2001s™ -379940.6442 s'° +896799249.9701s°

-6066962651178.26 s* - 932837689816997 s -1.958302¢+185s°
-1.859089¢ + 020 s° - 2.044439¢ + 023 s* -1.046559¢ + 025 s>
-8.4284080+027 s* -1.788379 +029 s -1.187480e + 032
D(s) = s +305.6821s" +25290786.417s" +6921924171.4647s°
+12966412199201.3s® +2.173869124e +015s” +2.17280+018s’
+2.300373e+020s° +1.5987000+023s* +9.791511e +024s> +

+5.313943e+027 s +1.430588¢+029 s +6.492615¢+031

The step response of estimated transfer function is shown in
fig, 8. Finally, to check the validity of the estimated transfer
function, the original output data and the estimated model’s
output data are compared in fig. 9.
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fig.6 Input / Output signal
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B) Example 3: The bound of Markov parameters

As a main example, an interval system is considered. The
structure of G(s) in fig.1 is assumed to be an interval plant.

The given interval plant is,

Gis)= [17.322317.823)s* +[25 255} +14.8112
s +[77.5)° +[17.322317.8223)2 +[2525.5} +14.8112

5)

Kharitonov plants of a given interval system are selected by



eq. (12), (13), (14). The same PRBS used in example 1 is
excited to the 16 plants. The specification of these signals
is:

- u(£):1023 x 1 Input vector (PRBS)

- y(¢):1023x1 Output vector

- Sampling Time : 0.05 sec

- Frequency Bandwidth of input signal : 107 Hz ~10* Hz
- Excitation time : 51.1 sec

From the time history data of input/output signal, 16
different kinds of Markov parameters are derived. Those
parameters are shown in fig. 11. To check whether the
Markov parameters from the 16 plants envelope all the
Markov parameters derived from the interval systém, several
plants in the interval system are arbitrarily selected. The
Markov parameters from 16 Kharitonov plants with those
from arbitrarily selected plants are compared in fig. 12.
Fig.13, the zoomed plot of fig.12, shows that the Markov
parameters from 16 Kharitonov plants do not envelope even
the Markov parameters from arbitrarily selected plants.

Magnitude

10 15
Time(secs)

Fig 11 Markov parameters from 16 Kharitonov plants of the
interval system

c.as

- : Markov parameters from 16 plants
. Markov paramsters from arbitranly
sslected plants

Magnilude

Time(secs)

Fig.12 Comparison of Markov parameters from 16
Kharitonov plants with those from arbitrarily selected plants.
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Fig.13 Zoomed Markov parameters of Fig. 12

C) Example 4. Maximal overshoot

In this example, the relationship between a model whose
Markov parameters have the maximal absolute values at
each time step and the maximum overshoot in the step
responses of Kharitonov plant is investigated. This result is
shown in fig. 14 and 15.
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5. Conclusion

In this paper, we have presented some results obtained
through counterexamples for time domain identification of
an interval system. By the results, the conjecture that
Markov parameters (Pulse Responses) from Kharitonov
plants would envelope those of the whole interval system
was proved to be not valid. Also, the result that a plant
whose Markov parameters have the maximal absolute value
at each time step gives the maximum overshoot in step
responses of an interval system is shown as one of extremal
properties of the interval system. Finding the bound of
coefficients of an interval system remained to be developed
in the future.
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