• Title/Summary/Keyword: Electronic packaging technology

Search Result 297, Processing Time 0.024 seconds

Soft Magnetic Property of Ternary Fe-9.8Si-6.0Al Alloy Using by Recycling Fe-Si Electrical Steel Sheet Scrap (Fe-Si 전기강판 폐스크랩을 이용한 3원계 Fe-9.8Si-6.0Al 합금의 연자성 특성)

  • Hong, Won Sik;Yang, Hyoung Woo;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Fe-9.8Si-6.0Al mother alloy was manufactured using by Fe-3.5Si recycled scrap and Si powder. And then, soft magnetic alloy powder of $D_{50}$ size and sphere type were prepared by gas atomization process. To obtain the soft magnetic powder of a high aspect ratio, in the first, we conducted the ball milling process for 8 hours. And heat treatment was performed under $650^{\circ}C$, 2 hours and $N_2$ atmosphere condition for reducing the residual stress of the powder. Based on these process, we made around $50{\mu}m$ diameter Fe-9.8Si-6.0Al powder, which morphology and shape was a similar to the commercial Fe-Si-Al powder. Finally, the soft magnetic sheets were prepared by tape casting process using by those powders. The permeability of the tape casting sheet was measured, and we confirmed the possibility of reusing to the soft magnetic materials of Fe-Si electric sheet scrap.

Review of Technology Development of High Heat Dissipative Insulating Sheet (고방열 절연시트의 기술개발 동향)

  • Yoo, Myong-Jae;Park, Seong-Dae;Lim, Ho-Sun;Lee, Woo-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • Currently due to increasing integration of various electronic devices and need of multi-functions, more and more heat is produced and for electronic devices to achieve maximum performance with optimum life time, heat dissipation is critical. A solution to such problems is use of high heat dissipative insulating sheet. In this paper status of current products are introduced and several technology aspects to meet the demand of increased heat dissipation needs is introduced.

Industrial Feature of Rare Metals in Electronic Components (전자부품산업에서의 희소금속의 산업적 특징)

  • Kim, Taek-Soo;Lee, Min-Ha;Kim, Bum-Sung;Choi, Han-Shin;Kim, Yong-Hwan;Lee, Hyo-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • Rare metals, called as vitamins of industry, are defined as the elements which are very few in the earth and are difficult to extract from ores. The requirements for total amounts of rare metals have increased as the global economics grows and the function of electronic components varies considerably. The rare metals have been maldistributed to America, CIS(Commonwealth of Independent States), China, Australia, Canada as about 80% of total natural resources, which also lead to unequal materials flow or distribution. Therefore, it was needed to investigate the feature of rare metals in terms of industry as well as technology. We could identify the industrial issues associated with the supply of critical rare elements in electronic components.

Development of a Flat-Plate Cooling Device for Electronic Packaging

  • Moon, Seok-Hwan;Hwang, Gunn;Lim, Hyun-Taeck
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.645-647
    • /
    • 2011
  • In this study, a microcapillary pumped loop (MCPL) that can be used as a cooling device for small electronic and telecommunications equipment has been developed. For thin devices such as an MCPL, securing a vapor flow space is a critical issue for enhancing the thermal performance. In this letter, such enhancement in thermal performance was accomplished by eliminating condensed droplets from the vapor line. By fabricating the grooves in the vapor line to eliminate droplets, a decrease in thermal resistance of about 63.7% was achieved.

Synthesis of Hollow Silica Using PMMA Particle as a Template (PMMA 고분자 입자를 템플릿으로 이용한 실리카 중공체의 제조)

  • Hwang, Ha-Soo;Cho, Kye-Min;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.353-355
    • /
    • 2010
  • Poly(methyl methacrylate) (PMMA) particles were prepared by soap-free emulsion polymerization of MMA in the presence of a cationic initiator, 2,2'-azobis(2-methylpropionamidine) (AIBA). The Stober method has been adopted to coat silica on the surface of these cationic particles. Negatively charged silica precursors were coated onto cationic particle surfaces by electronic interaction. During the coating process, hollow particles were directly obtained by dissolution of PMMA.

Heterogeneous Device Packaging Technology for the Internet of Things Applications (IoT 적용을 위한 다종 소자 전자패키징 기술)

  • Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • The Internet of Things (IoT) is a new technology paradigm demanding one packaged system of various semiconductor and MEMS devices. Therefore, the development of electronic packaging technology with very high connectivity is essential for successful IoT applications. This paper discusses both fan-out wafer level packaging (FOWLP) and 3D stacking technologies to achieve the integrattion of heterogeneous devices for IoT. FOWLP has great advantages of high I/O density, high integration, and design flexibility, but ultra-fine pitch redistribution layer (RDL) and molding processes still remain as main challenges to resolve. 3D stacking is an emerging technology solving conventional packaging limits such as size, performance, cost, and scalability. Among various 3D stacking sequences wafer level via after bonding method will provide the highest connectivity with low cost. In addition substrates with ultra-thin thickness, ultra-fine pitch line/space, and low cost are required to improve system performance. The key substrate technologies are embedded trace, passive, and active substrates or ultra-thin coreless substrates.

Order of Stress Singularities at Bonded Edge Corners with Two or Three Dissimilar Materials in the Eletronic Package (전자부품 패키지에 내재된 두재료 혹은 세재료 접합점에 대한 응력특이차수)

  • Choe, Seong-Ryeol;Gwon, Yong-Su;Park, Sang-Seon;Park, Jae-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.135-145
    • /
    • 1996
  • Order of stress singularities at bonded Edge Corners with two or three dissimilar isotropic Materials is analyzed. The problem is formulated by Mellin transform and characteristic equation is obtained as a determinant of matrix considering boundary conditions. Roots of characterictic equation are determinde by numerical calculations with ward method, from which the order of stress sigularities is obtained. Applying the results to the electronic packaging, the order of stress singularities is obtained. Applying the results to the electronic packaging, the order of stress singularities at bounded edge corners is calculated as a various bouned edge angle with given material combinations. Comparing the results, the optimal material combinaitons of bounded edge corners and bouned edge angle to reduce stress singularity could be determined. It suggests that the results are used to the basic design of electronic packaging reducing the stress singularity.

Design and Fabrication of a Low-cost Wafer-level Packaging for RF Devices

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Choi, Hyun-Jin;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.91-95
    • /
    • 2014
  • This paper presents the structure and process technology of simple and low-cost wafer-level packaging (WLP) for thin film radio frequency (RF) devices. Low-cost practical micromachining processes were proposed as an alternative to high-cost processes, such as silicon deep reactive ion etching (DRIE) or electro-plating, in order to reduce the fabrication cost. Gold (Au)/Tin (Sn) alloy was utilized as the solder material for bonding and hermetic sealing. The small size fabricated WLP of $1.04{\times}1.04{\times}0.4mm^3$ had an average shear strength of 10.425 $kg/mm^2$, and the leakage rate of all chips was lower than $1.2{\times}10^{-5}$ atm.cc/sec. These results met Military Standards 883F (MIL-STD-883F). As the newly proposed WLP structure is simple, and its process technology is inexpensive, the fabricated WLP is a good candidate for thin film type RF devices.

A study on Electrical Characteristic and Thermal Shock Property of TSV for 3-Dimensional Packaging (3차원 패키징용 TSV의 열응력에 대한 열적 전기적 특성)

  • Jeong, Il Ho;Kee, Se Ho;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.23-29
    • /
    • 2014
  • Less power consumption, lower cost, smaller size and more functionality are the increasing demands for consumer electronic devices. The three dimensional(3-D) TSV packaging technology is the potential solution to meet this requirement because it can supply short vertical interconnects and high input/output(I/O) counts. Cu(Copper) has usually been chosen to fill the TSV because of its high conductivity, low cost and good compatibility with the multilayer interconnects process. However, the CTE mismatch and Cu ion drift under thermal stress can raise reliability issues. This study discribe the thermal stress reliability trend for successful implementation of 3-D packaging.

INTERCONNECTION TECHNOLOGY IN ELECTRONIC PACKAGING AND ASSEMBLY

  • Wang, Chunqing;Li, Mingyu;Tian, Yanhong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.439-449
    • /
    • 2002
  • This paper reviews our recent research works on the interconnection technologies in electronic packaging and assembly. At the aspect of advanced joining methods, laser-ultrasonic fluxless soldering technology was proposed. The characteristic of this technology is that the oxide film was removed through the vibration excitated by high frequency laser change in the molten solder droplet. Application researches of laser soldering technology on solder bumping of BGA packages were carried out. Furthermore, interfacial reaction between SnPb eutectic solder and Au/Ni/Cu pad during laser reflow was analyzed. At the aspect of soldered joints' reliability, the system for predicting and analyzing SMT solder joint shape and reliability(PSAR) has been designed. Optimization design method of soldered joints' structure was brought forward after the investigation of fatigue failure of RC chip devices and BGA packages under temperature cyclic conditions with FEM analysis and experimental study. At the aspect of solder alloy design, alloy design method based on quantum was proposed. The macroproperties such as melting point, wettability and strength were described by the electron parameters. In this way, a great deal of the experimental investigations was replaced, so as to realize the design and research of any kinds of solder alloys with low cost and high efficiency.

  • PDF