Browse > Article
http://dx.doi.org/10.6117/kmeps.2016.23.3.001

Heterogeneous Device Packaging Technology for the Internet of Things Applications  

Kim, Sarah Eunkyung (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.23, no.3, 2016 , pp. 1-6 More about this Journal
Abstract
The Internet of Things (IoT) is a new technology paradigm demanding one packaged system of various semiconductor and MEMS devices. Therefore, the development of electronic packaging technology with very high connectivity is essential for successful IoT applications. This paper discusses both fan-out wafer level packaging (FOWLP) and 3D stacking technologies to achieve the integrattion of heterogeneous devices for IoT. FOWLP has great advantages of high I/O density, high integration, and design flexibility, but ultra-fine pitch redistribution layer (RDL) and molding processes still remain as main challenges to resolve. 3D stacking is an emerging technology solving conventional packaging limits such as size, performance, cost, and scalability. Among various 3D stacking sequences wafer level via after bonding method will provide the highest connectivity with low cost. In addition substrates with ultra-thin thickness, ultra-fine pitch line/space, and low cost are required to improve system performance. The key substrate technologies are embedded trace, passive, and active substrates or ultra-thin coreless substrates.
Keywords
Internet of Things; IoT; fan-out wafer level packaging; FOWLP; 3D stacking; SiP;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Q. Zhang, "Overview of the Internet of Things(IoTs)", FYG5100 Lecture Note, HKUST (2013) from http://www.cs.ust.hk/-qianzh/FYTGS5100/fall2013/notes/Chapter1-IoT.pdf
2 Internet of Things, Wikipedia from https://en.wikipedia.org/wiki/Internet_of_things
3 W. Chen, "The challenges and opportunities of Advanced Packaging Materials", 12th ISMP-IAAC, Oct. 16 (2014).
4 L. Srivastava, P. Biggs, T. Kelly, Y. Lozanova, L. P. Chavolla, J. Ponder, R. Sagalbayeva, S. Skvortsova and C. Sund, "Internet of Things", ITU Internet Report, (2005).
5 D. Evans, "The Internet of Things, how the Next Evolution of the Internet Is Changing Everything", Cisco IBSG, April (2011) from https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
6 C. Joo and H. Na, "A Study of Research Trend about Internet of Things", Information policy, 22(3), 3 (2015).
7 I. Lee and K. Lee, "The Internet of Things (IoT): Applications, investments, and challenges for enterprises", Business Horizons, 58, 431 (2015).   DOI
8 J. H. Lau, "Semiconductors and packaging for the Internet of Things", Chip Scale Review, May-June, 25 (2015).
9 K. Suu, "High density packaging technology solution for smart ICT", IEEE Pan Pacific Microelectronics Symp., 1 (2016).
10 M. Park, S. Kim and S. E. Kim, "TSV Liquid Cooling System for 3D Integrated Circuits", J. Microelectron. Packag. Soc., 20(3), 1 (2013).   DOI
11 M. Park, S. Kim and S. E. Kim, "Study of chip-level liquid cooling for high-heat-flux devices", J. Microelectron. Packag. Soc., 22(2), 27 (2015).   DOI
12 Y. Jin, X. Baraton, S. W. Yoon, Y. Lin, P. C. Marimuthu, V. P. Ganesh, T. Meyer and A. Bahr, "Next Generation eWLB (embedded Wafer Level BGA) Packaging", IEEE 12th EPTC, 520 (2010).
13 H. Hayashi, T. Takahashi, N. Shintani, T. Kondo, H. Marutani, Y. Takehara, K. Higaki, O. Yamagata, Y. Yamaji, A. Katsumata and Y. Hiruta, "A novel wafer-level fanout package ($WFOP^{TM}$) applicable to 50 ${\mu}m$ pad pitch interconnects", IEEE 13th EPTC, 730 (2010).
14 S. Kroehnert, L. Wang and L. Zhang, "Advancing fan-out wafer-level packaging for mobile applications", Chip Scale Review, Nov-Dec, 1 (2015).
15 C. Liu, S. Chen, F. Kuo, H. Chen, E. Yeh, C. Hsieh, L. Huang, M. Chiu, J. Yeh, T. Lin, T. Yeh, S. Hou, J. Hung, J. Lin, C. Jou, C. Wang, S. Jeng and D. Yu, "High-performance integrated fan-out wafer-level packaging (InFO-WLP): technology and system integration", IEEE IEDM, 14.1.1-14.1.4. (2012).
16 T. Meyer, G. Ofner, S. Bradl, M. Brunnbauer and R. Hagen, "Embedded wafer level ball grid array (eWLB)", IEEE 10th EPTC, 994 (2008).
17 J. Azemar and P. Garrou, "Fan-out packaging: what can explain such a great potential?", Chip Scale Review, May-June, 5 (2015).
18 S. W. Yoon, B. Petrov and K. Liu, "Advanced wafer-level technology: enabling innovations in mobile, IoT and wearable electronics", Chip Scale Review, May-June, 54 (2015).
19 J. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. Paivikki Buchwalter, E. Sprogis, Hua Gan, R. R. Horton, R. Polastre, S. L. Wright, C. Schuster, C. Baks, F. Doany, J. Rosner and S. Cordes, "Three dimensional silicon integration using fine pitch interconnection,silicon processing and silicon carrier packaging technology", Proc. IEEE Custom Integrated Circuits Conf., 659 (2005).
20 M. Koyanagi, "Heterogeneous 3D integration for internet of things", IEEE ICSITC, 1 (2014).
21 J. Yannou and J. Baron, "3DIC and TSV Interconnects", Yole Development 2010 Report Series, (2010).
22 M. J. Wolf, "3D Heterogeneous Integration as a Holistic Approach", 10th Int. Nanotech. Conf. Comm. Cooper. (2014).
23 S. E. Kim and S. Kim, "Wafer level Cu-Cu direct bonding for 3D integration", Microelectron. Eng., 137, 158 (2015).   DOI
24 Y. H. Cho, S. E. Kim and S. Kim, "Wafer Level Bonding Technology for 3D Stacked IC", J. Microelectron. Packag. Soc., 20(1), 7 (2013).
25 S. Kang, J. Lee, E. Kim, N. Lim, S. Kim, S. Kim and S. E. Kim, "Fabrication and Challenges of Cu-to-Cu Wafer Bonding", J. Microelectron. Packag. Soc., 19(2), 29 (2012).   DOI
26 E. Kim and J. Sung, "Yield challenges in wafer stacking technology", Microelectron. Reliab., 48, 1102 (2008).   DOI
27 S. E. Kim, "Manufacturing yield challenges for wafer-towafer integration", J. Microelectron. Packag. Soc., 20(1), 1 (2013).   DOI
28 S. E. Kim, R. S. List and T. Letson, "Etch stop layer for silicon (si) via etch in three-dimensional (3-d) wafer-to-wafer vertical stack", US patent No. 6,645,832 (2003).
29 Sony's Stacked CMOS Image Sensor Solves All Existing Problems in One Stroke (2012) from http://www.sony.net/Products/SC-HP/cx_news_archives/img/pdf/vol_68/sideview_vol68.pdf
30 S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, K. Inoue, H. Takahashi, T. Nagano, Y. Nitta, T. Hirayama and N. Fukushima, "A 1/4-inch 8M pixel back-illuminated stacked CMOS image sensor", Proc. IEEE ISSCC, 484 (2013).
31 R. Beica, "The growth of advanced packaging: Technology overview, applications and market trends", SEMICON Taiwan, Sep. (2015).
32 D. Hu, "The requirement of future substrate", iNEMI Sub. & Packag. Tech. Workshop (2014).
33 A. Gerstenmayer, D. Drofenik and V. Lam, "Trends, Markets & Strategy Update", AT&S Analyst Day (2015) from http://www.ats.net/investors/downloadcentre/
34 V. Sundaram, H. Chan, F. Liu, R. Tummala, H. Roberts, S. Lamprecht, K. Matejat, A. Oezkoek, S. Kennedy, J. Dobrick and D. Baars, "Super high density two metal layer ultra thin organic substrates for next generation system-on-package (SOP), SIP and ultra-fine pitch flip-chip packages", 14th Pan Pacific Microelectron. Symp., (2009).
35 K. Lee, S. Cha and P. Shim, "Form factor and cost driven advanced package substrates for mobile and IoT applications", IEEE CSITC, 1 (2016).