• Title/Summary/Keyword: Electron-phonon interaction

Search Result 22, Processing Time 0.026 seconds

Investigation of the Electron-phonon Interaction in Metals (금속에 있어서 전자-음향자 상호작용에 관한 연구)

  • 김성규;김예현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.92-96
    • /
    • 1982
  • In this paper, the interaction of electron and phonon in metals is expressed using Hamiltonian operator as follows. By excahnging phonon energy with in the vicinity of isotropical Fermi surface and using following electron and hole operators. We obtain the interaction of electron and phonon. And new Feynman Graphs are tried with the following conditions on. First, when state transfer state, phonon cannot be created. Second, when state transfer state, phonon cannot be destroyed. Third, when state transfer state, phonon can be created or destroyed. Fourth, when state transfer state, phonon can be created or destroyed.

  • PDF

Effect of Joule Heating Variation on Phonon Heat Flow in Thin Film Transistor (줄 가열 변화에 따른 박막 트랜지스터 내 포논 열 흐름에 대한 수치적 연구)

  • Jin, Jae-Sik;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.820-826
    • /
    • 2009
  • The anisotropic phonon conductions with varying Joule heating rate of the silicon film in Silicon-on-Insulator devices are examined using the electron-phonon interaction model. It is found that the phonon heat transfer rate at each boundary of Si-layer has a strong dependence on the heating power rate. And the phonon flow decreases when the temperature gradient has a sharp change within extremely short length scales such as phonon mean free path. Thus the heat generated in the hot spot region is removed primarily by heat conduction through Si-layer at the higher Joule heating level and the phonon nonlocality is mainly attributed to lower group velocity phonons as remarkably dissimilar to the case of electrons in laser heated plasmas. To validate these observations the modified phonon nonlocal model considering complete phonon dispersion relations is introduced as a correct form of the conventional theory. We also reveal that the relation between the phonon heat deposition time from the hot spot region and the relaxation time in Si-layer can be used to estimate the intrinsic thermal resistance in the parallel heat flow direction as Joule heating level varies.

A Numerical Study on Phonon Spectral Contributions to Thermal Conduction in Silicon-on-Insulator Transistor Using Electron-Phonon Interaction Model (전자-포논 상호작용 모델을 이용한 실리콘 박막 소자의 포논 평균자유행로 스펙트럼 열전도 기여도 수치적 연구)

  • Kang, Hyung-sun;Koh, Young Ha;Jin, Jae Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.409-414
    • /
    • 2017
  • The aim of this study is to understand the phonon transfer characteristics of a silicon thin film transistor. For this purpose, the Joule heating mechanism was considered through the electron-phonon interaction model whose validation has been done. The phonon transport characteristics were investigated in terms of phonon mean free path for the variations in the device power and silicon layer thickness from 41 nm to 177 nm. The results may be used for developing the thermal design strategy for achieving reliability and efficiency of the silicon-on-insulator (SOI) transistor, further, they will increase the understanding of heat conduction in SOI systems, which are very important in the semiconductor industry and the nano-fabrication technology.

Optical phonon and scattering in uniaxial crystals

  • Lee, B.C
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.118-118
    • /
    • 2000
  • We investigate Frohlich-like electron--optical-phonon interactionsin uniaxial crytals based on the macroscopic dielectric continuum model. In general, the optical-phonon branches support mixed longitudinal and transverse modes due to the anisotropy. For heterostructures with double interfaces and superlattices, it is known that confined, interface, and half-space optical phonon modes exist in zincblende cystals. In uniaxial structures, additional propagating modes may exist in wurtzite heterosystems due to anisotropic phonon dispersion. This is especially the case when the dielectric properties of the adjacent heterostructure materials do not differ substantially. The dispersion relations and the interaction Hamiltonians for each of these modes are derived.

  • PDF

Predictions of Phonon and Electron Contributions to Thermal Conductivity in Silicon Films with Varying Doping Density (박막 실리콘 내 도핑 농도 변화에 따른 포논과 전자의 열전도율 기여도에 대한 수치해석)

  • Jin, Jae-Sik;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2182-2187
    • /
    • 2007
  • The relative contributions of phonon and electron to the thermal conductivity of silicon film with varying doping density are evaluated from the modified electron-phonon interaction model, which is applicable to the micro/nanoscale simulation of energy transport between energy carriers. The thermal conductivities of intrinsic silicon layer thicknesses from 20 nm to 500 nm are calculated and extended to the variation in n-type doping densities from 1.0 ${\times}$ $10^{18}$ to 5.0 ${\times}$ $10^{20}$ $cm^{-3}$, which agree well with the experimental data and theoretical model. From simulation results, the phonon and electron contributions to thermal conductivity are extracted. The electron contribution in the silicon is found to be not negligible above $10^{19}$ $cm^{-3}$, which can be classified as semimetal or metal by the value of its electrical resistivity at room temperature. The thermal conductivity due to electron is about 57.2% of the total thermal conductivity at doping concentration 5.0 ${\times}$ $10^{20}$ $cm^{-3}$ and silicon film thickness 100 nm.

  • PDF

Barrier-Transition Cooling in LED

  • Kim, Jedo
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.44-51
    • /
    • 2013
  • This paper proposes and analyzes recycling of optical phonons emitted by nonradiative decay, which is a major thermal management concern for high-power light emitting diodes (LED), by introducing an integrated, heterogeneous barrier cooling layer. The cooling is proportional to the number of phonons absorbed per electron overcoming the potential barrier, while the multi-phonon absorption rate is inversely proportional to this number. We address the theoretical treatment of photon-electron-phonon interaction/transport kinetics for optimal number of phonons (i.e., barrier height). We consider a GaN/InGaN LED with a metal/AlGaAs/GaAs/metal potential barrier and discuss the energy conversion rates. We find that significant amount of heat can be recycled by the barrier transition cooling layer.

The magnetic dependence of 2-dimension quantum optical transition in electron-deformation potential phonon interaction systems in Ge

  • Choi, Hyenil;Cho, Hyunchul;Lee, Suho
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.446-454
    • /
    • 2018
  • In this work, we summarize the calculation processes of obtaining a scattering factor using with the equilibrium average projection scheme (EAPS), with moderately weak coupling (MWC) interaction, and obtain the line-shape formula of an electron-deformation phonon interacting system interested in the confinement of electrons by squarwell confinement potentials in quantum two dimensional system.. Through the numerical analysis, we analysis the magnetic dependence of absorption power, P(B) in several temperature and frequency difference dependence of absorption power $P({\Delta}{\omega})$, in several external field, where ${\Delta}{\omega}={\omega}-{\omega}_0$ and ${\omega}({\omega}_0)$ is the angular frequency (the cyclotron resonance frequency). The result of equilibrium average projection scheme (EAPS) in SER-MWC explains the properties of quantum transition quite well.

Cyclotron Resonance of the Wannier-Landau Transition System Based on the Ensemble Projection Technique

  • Jung-Il Park
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.4
    • /
    • pp.28-34
    • /
    • 2023
  • We study the linear-nonlinear quantum transport theory of Wannier-Landau transition system in the confinement of electrons by a square well confinement potential. We use the projected Liouville equation method with the ensemble density projection technique. We select the dynamic value under a linearly oscillatory external field. We derive the dynamic value formula and the memory factor functions in three electron phonon coupling systems and electron impurity coupling systems of two transition types, the intra-band transitions and inter-band transitions. We obtain results that can be applied directly to numerical analyses. For simple example of application, we analyze the absorption power and line-widths of ZnO, through the numerical calculation of the theoretical result in the Landau system.

더블 전자 층 간의 상호관계와 드래그 현상

  • Lee, Ga-Yeong
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.19-28
    • /
    • 2018
  • Coulomb drag is an effective probe into interlayer interaction between two electron systems in close proximity. For example, it can be a measure of momentum, phonon, or energy transfer between the two systems. The most exotic phenomenon would be when bosonic indirect excitons (electron-hole pairs) are formed in double layer systems where electrons and holes are populated in the opposite layers. In this review, we present various drag phenomena observed in different double layer electron systems, e.g. GaAs/AlGaAs heterostructures and two-dimensional material based heterostructures. In particular, we address the different behavior of Coulomb drag depending on its origin such as momentum or energy transfer between the two layers and exciton condensation. We also discuss why it is difficult to achieve electron-hole pairs in double layer electron systems in equilibrium.

The Magnetic Field Dependence of the Confinement Potential due to the Interaction of Electron and Piezoelectric Phonon in GaAs Semiconducting Materials (구속 포텐셜의 전자-압전 포논 상호 작용에 따른 GaAs의 자기장 의존 특성)

  • Lee, Su-Ho;Kim, Hai-Jai;Joo, Seok-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.149-154
    • /
    • 2018
  • We consider the system is subject to the linearly polarized oscillatory external field. We study the optical quantum transition Line shapes(QTLS) which show the absorption power and the quantum transition line widths(QTLW) of electron-piezoelectric phonon interacting system. We analyze the magnetic field dependence of the QTLS and the QTLW in various cases. In order to analysis the quantum transition, we compare the magnetic field dependence of the QTLW and the QTLS of two transition process, the intra-Landau level transition process and the inter-Landau level transition process.