Browse > Article
http://dx.doi.org/10.9726/kspse.2013.17.5.044

Barrier-Transition Cooling in LED  

Kim, Jedo (Department of Mechanical Engineering, Pukong National University)
Publication Information
Journal of Power System Engineering / v.17, no.5, 2013 , pp. 44-51 More about this Journal
Abstract
This paper proposes and analyzes recycling of optical phonons emitted by nonradiative decay, which is a major thermal management concern for high-power light emitting diodes (LED), by introducing an integrated, heterogeneous barrier cooling layer. The cooling is proportional to the number of phonons absorbed per electron overcoming the potential barrier, while the multi-phonon absorption rate is inversely proportional to this number. We address the theoretical treatment of photon-electron-phonon interaction/transport kinetics for optimal number of phonons (i.e., barrier height). We consider a GaN/InGaN LED with a metal/AlGaAs/GaAs/metal potential barrier and discuss the energy conversion rates. We find that significant amount of heat can be recycled by the barrier transition cooling layer.
Keywords
Recycling; Phonon; Cooling; LED; Barrier; Transition; Heat;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. F. Schubert, 2006, "Light-Emitting Diodes" (Cambridge University Press, 2nd ed.)
2 M. Arik and A. Setlur, 2009, "Environmental and economical impact of LED lighting systems and effect of thermal management" International Journal of Energy Research, Vol. 34, pp. 1195-1202.   DOI   ScienceOn
3 M. Kaviany, 2002, "Principles of Heat Transfer" Wiley, Cambridge.
4 G. Held, 2008, "Introduction to Light Emitting Diode Technology and Applications" (Auerbach Publications, Boca Raton, 2008).
5 G. D. Mahan and L. M. Woods, 1998, "Multilayer Thermionic Refrigeration" Physical Review Letters, Vol. 80, pp. 4016-4019.   DOI   ScienceOn
6 G. D. Mahan, L. M. Woods, and M. Bartkowiak, 1998, "Multilayer thermionic refrigerator and generator" Journal of Applied Physics, Vol. 83, pp. 4683-4690.   DOI   ScienceOn
7 A. Shakouri and J. E. Bowers, 1997, "Heterostructure integrated thermionic coolers" Applied. Physics Letters, Vol. 9, pp. 1234-1237.
8 A. Mal'shukov and K. Chao, 2001, "Opto-Thermionic Refrigeration in Semiconductor Heterostructures", Physical Review Letters, Vol. 86, pp. 5570-5573.   DOI   ScienceOn
9 B. C. Lough, S. P. Lee, R. A. Lewis, and C. Zhang, 2001, "Numerical calculation of thermionic cooling efficiency in a doublebarrier semiconductor heterostructure" Physica E 11, pp. 287-291.   DOI   ScienceOn
10 P. Han, K. Jin, Y. Zhou, X. Wang, Z. Ma, S. Ren, A. Mal'shukov and K. A. Chao, 2006, "Analysis of optothermionic refrigeration based on semiconductor heterojunction", Journal of Applied Physics, Vol. 99, pp. 074504-074509.   DOI   ScienceOn
11 S. Yen and K. Lee, 2010, "Analysis of heterostructures for electroluminescent refrigeration and light emitting without heat generation", Journal of Applied Physics, Vol. 107, pp. 054513-054522.   DOI   ScienceOn
12 P. Han, K. Jin, Y. Zhou, H. Lu, and G. Yang, 2007, "Numerical designing of semiconductor structure for optothermionic refrigeration", Journal of Applied Physics, Vol. 101, pp. 014506-014510.   DOI   ScienceOn
13 J. Kim, A. Kapoor, and M. Kaviany, 2008, "Material Metrics for laser cooling of solids" Physical Review B, Vol. 77, 115127-115142.   DOI   ScienceOn
14 J. Kim, and M. Kaviany, 2009, Phonon Recycling in Ion-doped Lasers", Applied Physics Letters, Vol. 95, pp. 074103-074106.   DOI   ScienceOn
15 J. Kim, and M. Kaviany, 2010, "Phonon Coupling Enhanced Absorption of Alloyed Amorphous Silicon for Solar Photovoltaics", Physical Review B, Vol. 82, pp. 134205-134211.   DOI   ScienceOn
16 J. Piprek, 2007, "Nitride Semiconductor Devices: Principles and Simulation" (Wiley-VCH, Weinheim).
17 J. Singh, 2003, "Electronic and Optoelectronic Properties of Semiconductor Blue Lasers and Light Emitting Diodes" (Cambridge University Press.)
18 S. Nakamura and S. Chichibu, 2000, "Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes" (CRC Press, New York, 2000).
19 G. P. Srivastava, 1990, "The Physics of Phononons"(Taylor & Francis, NewYork).
20 F. W. Ragay, E. W. M. Ruigrok, and J. H. Wolter, 1994, "GaAs-AlGaAs heterojunction solar cells with increased open-circuit voltage" IEEE Photovoltaic Specialists Conference 2, pp. 1934-1940.