DOI QR코드

DOI QR Code

A Numerical Study on Phonon Spectral Contributions to Thermal Conduction in Silicon-on-Insulator Transistor Using Electron-Phonon Interaction Model

전자-포논 상호작용 모델을 이용한 실리콘 박막 소자의 포논 평균자유행로 스펙트럼 열전도 기여도 수치적 연구

  • Kang, Hyung-sun (Dept. of Mechanical Design, Chosun College of Science & Technology) ;
  • Koh, Young Ha (Dept. of Mechanical Design, Chosun College of Science & Technology) ;
  • Jin, Jae Sik (Dept. of Mechanical Design, Chosun College of Science & Technology)
  • 강형선 (조선이공대학교 기계설계과) ;
  • 고영하 (조선이공대학교 기계설계과) ;
  • 진재식 (조선이공대학교 기계설계과)
  • Received : 2016.01.06
  • Accepted : 2017.03.21
  • Published : 2017.06.01

Abstract

The aim of this study is to understand the phonon transfer characteristics of a silicon thin film transistor. For this purpose, the Joule heating mechanism was considered through the electron-phonon interaction model whose validation has been done. The phonon transport characteristics were investigated in terms of phonon mean free path for the variations in the device power and silicon layer thickness from 41 nm to 177 nm. The results may be used for developing the thermal design strategy for achieving reliability and efficiency of the silicon-on-insulator (SOI) transistor, further, they will increase the understanding of heat conduction in SOI systems, which are very important in the semiconductor industry and the nano-fabrication technology.

본 연구의 목적은 실제 실리콘 박막 트랜지스터 내 포논 전달 특성을 이해하는 것이다. 이를 위해 박막 소자 내 열해석 예측 정확성이 검증된 전자-포논 상호작용 모델을 이용하여 반도체 산업에서 중요한 Silicon-on-Insulator(SOI) 시스템에 대한 다양한 조건에서 전자-포논 산란에 의한 Joule 가열 메커니즘의 고려하여 포논 전달 해석을 수행했다. 소자 장치 전원(device power)과 실리콘 층 두께 변화에 따른 포논의 평균자유행로(mean free path) 스펙트럼에 대한 열적 특성을 조사하여, 실제 SOI 소자 내 포논 전달을 이해했다. 이 결과는 SOI 소자의 신뢰성 설계 및 고효율 열소산(heat dissipation) 설계전략에 필요한 포논 전달 특성 이해에 활용될 수 있다.

Keywords

References

  1. Marconnet, A. M., Asheghi, M. and Goodson, K. E., 2013, "From the Casimir Limit to Phononic Crystals: 20 Years of Phonon Transport Studies Using Siliconon- Insulator Technology," ASME Journal of Heat Transfer, Vol. 135, No. 6, Paper Number 061601. https://doi.org/10.1115/1.4023577
  2. Tien, C. L., Majumdar, A. and Gerner, F. M., 1998, MICROSCALE ENERGY TRANSPORT, Taylor & Francis, Washington D. C.
  3. Goodson, K. E., Flik, M. I., Su, L. T. and Antoniadis, D. A., 1995, "Prediction and Measurement of Temperature Fields in Silicon-on-Insulator Electronic Circuits," ASME Journal of Heat Transfer, Vol. 117, No. 3, pp. 574-581. https://doi.org/10.1115/1.2822616
  4. Sverdrup, P. G., Ju, Y. S. and Goodson, K. E., 2001, "Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors," ASME Journal of Heat Transfer, Vol. 123, No. 1, pp. 130-137. https://doi.org/10.1115/1.1337651
  5. Narumanchi, S. V. J., Murthy, J. Y. and Amon, C. H., 2004, "Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-oninsulator Transistors," ASME Journal of Heat Transfer, Vol. 127, No. 7, pp. 713-723.
  6. Jin, J. S. and Lee, J. S., 2007, "Electron-Phonon Interaction Model and Prediction of Thermal Energy Transport in SOI Transistor," Journal of Nanoscience and Nanotechnology, Vol. 7, No. 11, pp. 4094-4100. https://doi.org/10.1166/jnn.2007.010
  7. Jin, J. S. and Lee, J. S., 2009, "Electron-Phonon Interaction Model and Its Application to Thermal Transport Simulation during ESD Event in NMOS Transistor," ASME Journal of Heat Transfer, Vol. 131, No. 9, Paper Number 092401. https://doi.org/10.1115/1.3133882
  8. Kang, H.-S., Koh, Y. H. and Jin, J. S., 2016, "A Numerical Study on the Anisotropic Thermal Conduction by Phonon Mean Free Path Spectrum of Silicon in Silicon-on-Insulator Transistor," Transactions of the Korean Society of Mechanical Engineers B, Vol. 40, No. 2, pp. 111-117. https://doi.org/10.3795/KSME-B.2016.40.2.111
  9. Jin, J. S., 2016, "Direct Determination of Spectral Phonon-Surface Scattering Rate from Experimental Data on Spectral Phonon Mean Free Path Distribution," Transactions of the Korean Society of Mechanical Engineers B, Vol. 40, No. 9, pp. 621-627. https://doi.org/10.3795/KSME-B.2016.40.9.621
  10. Jin, J. S., Lee, B. J. and Lee, H. J., 2013, "Analysis of Phonon Transport in Silicon Nanowires Including Optical Phonons," Journal of the Korean Physical Society, Vol. 63, No. 5, pp. 1007-1013. https://doi.org/10.3938/jkps.63.1007
  11. Jin, J. S., 2014, "Prediction of Phonon and Electron Contributions to Thermal Conduction in Doped Silicon Films," Journal of Mechanical Science and Technology, Vol. 28, No. 6, pp. 2287-2292. https://doi.org/10.1007/s12206-014-0518-3
  12. Jin, J. S. and Lee, J. S., 2009, "Effect of Joule Heating Variation on Phonon Heat Flow in Thin Film Transistor," Transactions of the Korean Society of Mechanical Engineers B, Vol. 33, No. 10, pp. 820- 826. https://doi.org/10.3795/KSME-B.2009.33.10.820
  13. Pop, E., Dutton, R. W. and Goodson, K. E., 2005, "Monte Carlo Simulation of Joule Heating in Bulk and Strained Silicon," Applied Physics Letters, Vol. 86, No. 8, Paper Number 082101.
  14. Pop, E., Dutton, R. W. and Goodson, K. E., 2004, "Analytic band Monte Carlo Model for Electron Transport in Si Including Acoustic and Optical Phonon Dispersion," Journal of Applied Physics, Vol. 96, No. 9, pp. 4998-5005. https://doi.org/10.1063/1.1788838
  15. Liao, B., Qiu, B., Zhou, J., Huberman, S., Esfarjani, K. and Chen, G., 2015, "Significant Reduction of Lattice Thermal Conductivity by Electronphonon Interaction in Silicon with High Carrier Concentrations; a First-principles Study," Physical Review Letters, Vol. 114, No. 11, Paper Number 115901.
  16. Narumanchi, S. V. J., Murthy, J. Y. and Amon, C. H., 2004, "Submicron Heat Transfer Model in Silicon Accounting for Phonon Dispersion and Polarization," ASME Journal of Heat Transfer, Vol. 126, No. 6, pp. 946-955. https://doi.org/10.1115/1.1833367
  17. Minnich, A. J., Johnson, J. A., Schmidt, A. J., Esfarjani, K., Dresselhaus, M. S., Nelson, K. A. and Chen, G., 2011, "Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths," Physical Review Letters, Vol. 107, No. 9, Paper Number 095901.
  18. Minnich, A. J., 2012, "Determining Phonon Mean Free Paths from Observations of Quasiballistic Thermal Transport," Physical Review Letters, Vol. 109, No. 20, Paper Number 205901.
  19. Regner, K. T., Sellan, D. P., Su, Z., Amon, C. H., McGaughey, A. J. H. and Malen, J. A., 2013, "Broadband Phonon Mean Free Path Contributions to Thermal Conductivity Measured using Frequency Domain Thermoreflectance," Nature Communications, Vol. 4, Paper Number 1640.
  20. Yang, F. and Dames, C., 2013, "Mean Free Path Spectra as a Tool to Understand Thermal Conductivity in Bulk and Nanostructures," Physical Review B, Vol. 87, No. 3, Paper Number 035437.
  21. Xie, G., Guo, Y., Wei, X., Zhang, K., Sun, L., Zhong, J., Zhang, G. and Zhang, Y.-W., 2014, "Phonon Mean Free Path Spectrum and Thermal Conductivity for $Si_{1−x}Ge_x$ Nanowires," Applied Physics Letters, Vol. 104, No. 23, Paper Number 233901.
  22. Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. and Chen, G., 2015, "Spectral Mapping of Thermal Conductivity Through Nanoscale Ballistic Transport," Nature Nanotechnology, Vol. 10, No. 8, pp. 701-706. https://doi.org/10.1038/nnano.2015.109
  23. Brockhouse, B. N., 1959, "Lattice Vibrations in Silicon and Germanium," Physical Review Letters, Vol. 2, No. 6, pp. 256-258. https://doi.org/10.1103/PhysRevLett.2.256
  24. Mittal, A. and Mazumder, S., 2010, "Monte Carlo Study of Phonon Heat Conduction in Silicon Thin Films Including Contributions of Optical Phonons," ASME Journal of Heat Transfer, Vol. 132, No. 5, Paper Number 052402.
  25. Mazumder, S. and Majumdar, A., 2001, "Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization," ASME Journal of Heat Transfer, Vol. 123, No. 4, pp. 749-759. https://doi.org/10.1115/1.1377018
  26. Hua, C. and Minnich, A. J., 2014, "Transport Regimes in Quasiballistic Heat Conduction," Physical Review B, Vol. 89, No. 9, Paper Number 094302.
  27. Feng, T. and Ruan, X, 2016, "Quantum Mechanical Prediction of Four-phonon Scattering Rates and Reduced Thermal Conductivity of Solids," Physical Review B, Vol. 93, No. 4, Paper Number 045202.