Browse > Article

더블 전자 층 간의 상호관계와 드래그 현상  

Lee, Ga-Yeong (광주과학기술원)
Publication Information
Ceramist / v.21, no.2, 2018 , pp. 19-28 More about this Journal
Abstract
Coulomb drag is an effective probe into interlayer interaction between two electron systems in close proximity. For example, it can be a measure of momentum, phonon, or energy transfer between the two systems. The most exotic phenomenon would be when bosonic indirect excitons (electron-hole pairs) are formed in double layer systems where electrons and holes are populated in the opposite layers. In this review, we present various drag phenomena observed in different double layer electron systems, e.g. GaAs/AlGaAs heterostructures and two-dimensional material based heterostructures. In particular, we address the different behavior of Coulomb drag depending on its origin such as momentum or energy transfer between the two layers and exciton condensation. We also discuss why it is difficult to achieve electron-hole pairs in double layer electron systems in equilibrium.
Keywords
double layer electron system; interlayer interaction; Coulomb drag; exciton condensation; two-dimensional material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. M. Solomon, P. J. Price, D. J. Frank, and D. C. La Tulipe, "New phenomena in coupled transport between 2D and 3D electron-gas layers," Phys. Rev. Lett., vol. 63, no. 22, pp. 2508-2511, Nov. 1989.   DOI
2 T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, and K. W. West, "Mutual friction between parallel two-dimensional electron systems," Phys. Rev. Lett., vol. 66, no. 9, pp. 1216-1219, Mar. 1991.   DOI
3 J. C. W. Song and L. S. Levitov, "Energy-Driven Drag at Charge Neutrality in Graphene," Phys. Rev. Lett., vol. 109, no. 23, p. 236602, Dec. 2012.   DOI
4 J. P. Eisenstein and A. H. MacDonald, "Bose-Einstein condensation of excitons in bilayer electron systems," Nature, vol. 432, no. 7018, pp. 691-694, Dec. 2004.   DOI
5 H. Noh, S. Zelakiewicz, T. J. Gramila, L. N. Pfeiffer, and K. W. West, "Phonon-mediated drag in doublelayer two-dimensional electron systems," Phys. Rev. B, vol. 59, no. 20, pp. 13114-13121, May 1999.   DOI
6 S. K. Banerjee, L. F. Register, E. Tutuc, D. Reddy, and A. H. MacDonald, "Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device," IEEE Electron Device Lett., vol. 30, no. 2, pp. 158-160, Feb. 2009.   DOI
7 D. Reddy, L. F. Register, E. Tutuc, and S. K. Banerjee, "Bilayer Pseudospin Field-Effect Transistor: Applications to Boolean Logic," IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 755-764, Apr. 2010.   DOI
8 M. Kellogg, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, "Observation of Quantized Hall Drag in a Strongly Correlated Bilayer Electron System," Phys. Rev. Lett., vol. 88, no. 12, p. 126804, Mar. 2002.   DOI
9 E. Tutuc, M. Shayegan, and D. A. Huse, "Counterflow Measurements in Strongly Correlated GaAs Hole Bilayers: Evidence for Electron-Hole Pairing," Phys. Rev. Lett., vol. 93, no. 3, p. 036802, Jul. 2004.   DOI
10 D. Nandi, A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, "Exciton condensation and perfect Coulomb drag," Nature, vol. 488, no. 7412, pp. 481-484, Aug. 2012.   DOI
11 J. I. A. Li, T. Taniguchi, K. Watanabe, J. Hone, A. Levchenko, and C. R. Dean, "Negative Coulomb Drag in Double Bilayer Graphene," Phys. Rev. Lett., vol. 117, no. 4, p. 046802, Jul. 2016.   DOI
12 A. F. Croxall et al., "Anomalous Coulomb Drag in Electron-Hole Bilayers," Phys. Rev. Lett., vol. 101, no. 24, p. 246801, Dec. 2008.   DOI
13 S. Kim, I. Jo, J. Nah, Z. Yao, S. K. Banerjee, and E. Tutuc, "Coulomb drag of massless fermions in graphene," Phys. Rev. B, vol. 83, no. 16, p. 161401, Apr. 2011.   DOI
14 S. Kim and E. Tutuc, "Coulomb drag and magnetotransport in graphene double layers," Solid State Commun., vol. 152, no. 15, pp. 1283-1288, Aug. 2012.   DOI
15 R. V. Gorbachev et al., "Strong Coulomb drag and broken symmetry in double-layer graphene," Nat. Phys., vol. 8, no. 12, pp. 896-901, Dec. 2012.   DOI
16 K. Lee, J. Xue, D. C. Dillen, K. Watanabe, T. Taniguchi, and E. Tutuc, "Giant Frictional Drag in Double Bilayer Graphene Heterostructures," Phys. Rev. Lett., vol. 117, no. 4, p. 046803, Jul. 2016.   DOI
17 A. Gamucci et al., "Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures," Nat. Commun., vol. 5, p. 5824, Dec. 2014.   DOI
18 A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures," Nature, vol. 499, no. 7459, p. 419, Jul. 2013.   DOI
19 K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, "2D materials and van der Waals heterostructures," Science, vol. 353, no. 6298, p. aac9439, Jul. 2016.   DOI
20 L. Britnell et al., "Resonant tunnelling and negative differential conductance in graphene transistors," Nat. Commun., vol. 4, p. 1794, Apr. 2013.   DOI
21 G. M. Rutter, S. Jung, N. N. Klimov, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, "Microscopic polarization in bilayer graphene," Nat. Phys., vol. 7, no. 8, pp. 649-655, Aug. 2011.   DOI
22 H. Min, R. Bistritzer, J.-J. Su, and A. H. MacDonald, "Room-temperature superfluidity in graphene bilayers," Phys. Rev. B, vol. 78, no. 12, p. 121401, Sep. 2008.   DOI
23 C. R. Dean et al., "Boron nitride substrates for highquality graphene electronics," Nat. Nanotechnol., vol. 5, no. 10, pp. 722-726, Oct. 2010.   DOI
24 J. C. W. Song, D. A. Abanin, and L. S. Levitov, "Coulomb Drag Mechanisms in Graphene," Nano Lett., vol. 13, no. 8, pp. 3631-3637, Aug. 2013.   DOI
25 K. Lee et al., "Chemical potential and quantum Hall ferromagnetism in bilayer graphene," Science, vol. 345, no. 6192, pp. 58-61, Jul. 2014.   DOI
26 J. Xue et al., "Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride," Nat. Mater., vol. 10, no. 4, pp. 282-285, Apr. 2011.   DOI
27 A. Perali, D. Neilson, and A. R. Hamilton, "High-Temperature Superfluidity in Double-Bilayer Graphene," Phys. Rev. Lett., vol. 110, no. 14, p. 146803, Apr. 2013.   DOI
28 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys., vol. 81, no. 1, pp. 109-162, Jan. 2009.   DOI
29 J.-J. Su and A. H. MacDonald, "Spatially indirect exciton condensate phases in double bilayer graphene," Phys. Rev. B, vol. 95, no. 4, p. 045416, Jan. 2017.   DOI
30 J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, "Gate-induced insulating state in bilayer graphene devices," Nat. Mater., vol. 7, no. 2, pp. 151-157, Feb. 2008.   DOI
31 J. I. A. Li, T. Taniguchi, K. Watanabe, J. Hone, and C. R. Dean, "Excitonic superfluid phase in doble bilayer graphene," Nat. Phys., vol. 13, no. 8, pp. 751-755, Aug. 2017.   DOI