DOI QR코드

DOI QR Code

Cyclotron Resonance of the Wannier-Landau Transition System Based on the Ensemble Projection Technique

  • Jung-Il Park (Nano-Physics and Technology Laboratory, Department of Physics, Kyungpook National University)
  • Received : 2023.11.29
  • Accepted : 2023.12.15
  • Published : 2023.12.20

Abstract

We study the linear-nonlinear quantum transport theory of Wannier-Landau transition system in the confinement of electrons by a square well confinement potential. We use the projected Liouville equation method with the ensemble density projection technique. We select the dynamic value under a linearly oscillatory external field. We derive the dynamic value formula and the memory factor functions in three electron phonon coupling systems and electron impurity coupling systems of two transition types, the intra-band transitions and inter-band transitions. We obtain results that can be applied directly to numerical analyses. For simple example of application, we analyze the absorption power and line-widths of ZnO, through the numerical calculation of the theoretical result in the Landau system.

Keywords

Acknowledgement

This work was supported by Kyungpook National University Research Fund.

References

  1. J. M. Luttinger, Phys. Rev, 121, 942 (1960)
  2. J. M. Luttinger, Phys. Rev, 121, 1251 (1961)
  3. R. J. Elliott, Phys. Rev. 108, 1384 (1957)
  4. D. S. Chemla. Helv. Phys. Acta 56, 607 (1983) https://doi.org/10.1259/0007-1285-56-668-607
  5. A. M. Tremblay, B. R. Patton and P. C. Martin, Ann. Phys. 124, 401 (1980)
  6. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957)
  7. J.R. Barker, J. Phys. C 6, 2633 (1973)
  8. H. Mori, Progr. Theor. Phys. 33, 423 (1965)
  9. C.S. Ting, S.C. Ying, J.J. Quinn, Phys. Rev. B 16, 5394 (1977)
  10. V.M. Kenkre, Phys. Rev. A 4, 2327 (1971)
  11. P. Grigoglini, G.P. Parravidini, Phys. Rev. B 125, 5180 (1982)
  12. S. Butscher, F. Milde, M. Hirtschulz, E. Malie, and A. Knorr. Appl. Phys. Lett. 91, 203103 (2007)
  13. E. Malie, M. Hirtschulz, F. Milde, Y. Wu, J. Maultzsch, T.F. Heinz, and A Knorr, Phys. Rev. B 77, 045432 (2008)
  14. Xiaoguang Wu, F.M. Peeters, J.T. Devreese, Phys. Rev. B 34, 8800 (1986)
  15. J.Y. Sug, S.H. Lee, Cent. Eur. J. Phys. 6, 812 (2008)
  16. J.I. Park, H.R. Lee, Jpn. J. Appl. Phys. 51, 52402 (2012)
  17. J.I. Park, J.Y. Sug, H.R. Lee, J. Kor. Phys. Soc. 53, 776 (2008)
  18. J.I. Park, H.R. Lee, H.K. Lee, J. Magnetics 16, 108 (2011)
  19. J.I. Park, J. Magnetics 17, 255 (2012)
  20. J.I. Park, Appl. Sci. Converg. Technol. 29, 82 (2020) https://doi.org/10.5757/ASCT.2020.29.4.082
  21. J. I. Park, J. Kor. Magn. Reson. Soc. 25, 51 (2021)
  22. J. I. Park, J. Kor. Magn. Reson. Soc. 24, 16 (2020)
  23. S. Chandra, M. Rafiee, J. Doran, and S.J. McCormack, Sol. Energ. Mat. Sol. C. 182, 331 (2018)