더블 전자 층 간의 상호관계와 드래그 현상

  • Published : 2018.06.30

Abstract

Coulomb drag is an effective probe into interlayer interaction between two electron systems in close proximity. For example, it can be a measure of momentum, phonon, or energy transfer between the two systems. The most exotic phenomenon would be when bosonic indirect excitons (electron-hole pairs) are formed in double layer systems where electrons and holes are populated in the opposite layers. In this review, we present various drag phenomena observed in different double layer electron systems, e.g. GaAs/AlGaAs heterostructures and two-dimensional material based heterostructures. In particular, we address the different behavior of Coulomb drag depending on its origin such as momentum or energy transfer between the two layers and exciton condensation. We also discuss why it is difficult to achieve electron-hole pairs in double layer electron systems in equilibrium.

Keywords

References

  1. P. M. Solomon, P. J. Price, D. J. Frank, and D. C. La Tulipe, "New phenomena in coupled transport between 2D and 3D electron-gas layers," Phys. Rev. Lett., vol. 63, no. 22, pp. 2508-2511, Nov. 1989. https://doi.org/10.1103/PhysRevLett.63.2508
  2. T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, and K. W. West, "Mutual friction between parallel two-dimensional electron systems," Phys. Rev. Lett., vol. 66, no. 9, pp. 1216-1219, Mar. 1991. https://doi.org/10.1103/PhysRevLett.66.1216
  3. J. C. W. Song and L. S. Levitov, "Energy-Driven Drag at Charge Neutrality in Graphene," Phys. Rev. Lett., vol. 109, no. 23, p. 236602, Dec. 2012. https://doi.org/10.1103/PhysRevLett.109.236602
  4. H. Noh, S. Zelakiewicz, T. J. Gramila, L. N. Pfeiffer, and K. W. West, "Phonon-mediated drag in doublelayer two-dimensional electron systems," Phys. Rev. B, vol. 59, no. 20, pp. 13114-13121, May 1999. https://doi.org/10.1103/PhysRevB.59.13114
  5. S. K. Banerjee, L. F. Register, E. Tutuc, D. Reddy, and A. H. MacDonald, "Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device," IEEE Electron Device Lett., vol. 30, no. 2, pp. 158-160, Feb. 2009. https://doi.org/10.1109/LED.2008.2009362
  6. D. Reddy, L. F. Register, E. Tutuc, and S. K. Banerjee, "Bilayer Pseudospin Field-Effect Transistor: Applications to Boolean Logic," IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 755-764, Apr. 2010. https://doi.org/10.1109/TED.2010.2041280
  7. J. P. Eisenstein and A. H. MacDonald, "Bose-Einstein condensation of excitons in bilayer electron systems," Nature, vol. 432, no. 7018, pp. 691-694, Dec. 2004. https://doi.org/10.1038/nature03081
  8. M. Kellogg, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, "Observation of Quantized Hall Drag in a Strongly Correlated Bilayer Electron System," Phys. Rev. Lett., vol. 88, no. 12, p. 126804, Mar. 2002. https://doi.org/10.1103/PhysRevLett.88.126804
  9. E. Tutuc, M. Shayegan, and D. A. Huse, "Counterflow Measurements in Strongly Correlated GaAs Hole Bilayers: Evidence for Electron-Hole Pairing," Phys. Rev. Lett., vol. 93, no. 3, p. 036802, Jul. 2004. https://doi.org/10.1103/PhysRevLett.93.036802
  10. D. Nandi, A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, "Exciton condensation and perfect Coulomb drag," Nature, vol. 488, no. 7412, pp. 481-484, Aug. 2012. https://doi.org/10.1038/nature11302
  11. A. F. Croxall et al., "Anomalous Coulomb Drag in Electron-Hole Bilayers," Phys. Rev. Lett., vol. 101, no. 24, p. 246801, Dec. 2008. https://doi.org/10.1103/PhysRevLett.101.246801
  12. S. Kim, I. Jo, J. Nah, Z. Yao, S. K. Banerjee, and E. Tutuc, "Coulomb drag of massless fermions in graphene," Phys. Rev. B, vol. 83, no. 16, p. 161401, Apr. 2011. https://doi.org/10.1103/PhysRevB.83.161401
  13. S. Kim and E. Tutuc, "Coulomb drag and magnetotransport in graphene double layers," Solid State Commun., vol. 152, no. 15, pp. 1283-1288, Aug. 2012. https://doi.org/10.1016/j.ssc.2012.04.032
  14. R. V. Gorbachev et al., "Strong Coulomb drag and broken symmetry in double-layer graphene," Nat. Phys., vol. 8, no. 12, pp. 896-901, Dec. 2012. https://doi.org/10.1038/nphys2441
  15. K. Lee, J. Xue, D. C. Dillen, K. Watanabe, T. Taniguchi, and E. Tutuc, "Giant Frictional Drag in Double Bilayer Graphene Heterostructures," Phys. Rev. Lett., vol. 117, no. 4, p. 046803, Jul. 2016. https://doi.org/10.1103/PhysRevLett.117.046803
  16. J. I. A. Li, T. Taniguchi, K. Watanabe, J. Hone, A. Levchenko, and C. R. Dean, "Negative Coulomb Drag in Double Bilayer Graphene," Phys. Rev. Lett., vol. 117, no. 4, p. 046802, Jul. 2016. https://doi.org/10.1103/PhysRevLett.117.046802
  17. A. Gamucci et al., "Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures," Nat. Commun., vol. 5, p. 5824, Dec. 2014. https://doi.org/10.1038/ncomms6824
  18. A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures," Nature, vol. 499, no. 7459, p. 419, Jul. 2013. https://doi.org/10.1038/nature12385
  19. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, "2D materials and van der Waals heterostructures," Science, vol. 353, no. 6298, p. aac9439, Jul. 2016. https://doi.org/10.1126/science.aac9439
  20. L. Britnell et al., "Resonant tunnelling and negative differential conductance in graphene transistors," Nat. Commun., vol. 4, p. 1794, Apr. 2013. https://doi.org/10.1038/ncomms2817
  21. H. Min, R. Bistritzer, J.-J. Su, and A. H. MacDonald, "Room-temperature superfluidity in graphene bilayers," Phys. Rev. B, vol. 78, no. 12, p. 121401, Sep. 2008. https://doi.org/10.1103/PhysRevB.78.121401
  22. C. R. Dean et al., "Boron nitride substrates for highquality graphene electronics," Nat. Nanotechnol., vol. 5, no. 10, pp. 722-726, Oct. 2010. https://doi.org/10.1038/nnano.2010.172
  23. J. C. W. Song, D. A. Abanin, and L. S. Levitov, "Coulomb Drag Mechanisms in Graphene," Nano Lett., vol. 13, no. 8, pp. 3631-3637, Aug. 2013. https://doi.org/10.1021/nl401475u
  24. G. M. Rutter, S. Jung, N. N. Klimov, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, "Microscopic polarization in bilayer graphene," Nat. Phys., vol. 7, no. 8, pp. 649-655, Aug. 2011. https://doi.org/10.1038/nphys1988
  25. J. Xue et al., "Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride," Nat. Mater., vol. 10, no. 4, pp. 282-285, Apr. 2011. https://doi.org/10.1038/nmat2968
  26. A. Perali, D. Neilson, and A. R. Hamilton, "High-Temperature Superfluidity in Double-Bilayer Graphene," Phys. Rev. Lett., vol. 110, no. 14, p. 146803, Apr. 2013. https://doi.org/10.1103/PhysRevLett.110.146803
  27. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys., vol. 81, no. 1, pp. 109-162, Jan. 2009. https://doi.org/10.1103/RevModPhys.81.109
  28. K. Lee et al., "Chemical potential and quantum Hall ferromagnetism in bilayer graphene," Science, vol. 345, no. 6192, pp. 58-61, Jul. 2014. https://doi.org/10.1126/science.1251003
  29. J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, "Gate-induced insulating state in bilayer graphene devices," Nat. Mater., vol. 7, no. 2, pp. 151-157, Feb. 2008. https://doi.org/10.1038/nmat2082
  30. J.-J. Su and A. H. MacDonald, "Spatially indirect exciton condensate phases in double bilayer graphene," Phys. Rev. B, vol. 95, no. 4, p. 045416, Jan. 2017. https://doi.org/10.1103/PhysRevB.95.045416
  31. J. I. A. Li, T. Taniguchi, K. Watanabe, J. Hone, and C. R. Dean, "Excitonic superfluid phase in doble bilayer graphene," Nat. Phys., vol. 13, no. 8, pp. 751-755, Aug. 2017. https://doi.org/10.1038/nphys4140