• Title/Summary/Keyword: Electron Beam Lithography

Search Result 168, Processing Time 0.031 seconds

The Control and Motion Characteristics of 5 axis Vacuum Stage for Electron Beam Lithography (전자빔 가공기용 진공 5축 스테이지의 제어 및 운동특성)

  • 이찬홍;박천홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.890-893
    • /
    • 2004
  • The ultra precision machining in industrial field are increased day by day. The diamond turning has been used generally, but now is faced with limitation of use, because of higher requirement of production field. The electron beam lithography is alternative in machining area as semiconductor production. For EB lithography, 5 axis vacuum stage is required to duplicate small and large patterns on wafer. The stage is composed of 2 rotational axis and 3 translational axis with 5 DC servo motors. The positioning repeatability and resolution of Z axis feed unit are 3.21$\mu$m and 0.5 $\mu$m/step enough to apply to lithography.

  • PDF

Research on the penetration depth of low-energy electron beam in the PMMA-resist film using Monte Carlo numerical analysis (Monte Carlo 수치해석법을 이용한 PMMA resist에서의 저 에너지 전자빔 투과 깊이에 관한 연구)

  • Ahn, Seung-Joon;Ahn, Seong-Joon;Kim, Ho-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.743-747
    • /
    • 2007
  • There has been steady effect for the development of the electron-beam lithography technologies for the circuit patterning of the future semiconductor devices. In this study, we have performed a Monte-Carlo simulation whore $1{\times}10^4$ electrons with various kinetic energies (100eV, 300eV, 500eV, 700eV, and 1000eV) were shot into polymethyl methacrylate(PMMA) resist of 100-nm thickness. The penetration depth of each electron beam in the resist layer were analyzed using Gaussian analysis method.

  • PDF

A Monte Carlo Simulation Model Development for Electron Beam Lithography Process in the Multi-Layer Resists and Compound Semiconductor Substrates (다층 리지스트 및 화합물 반도체 기판 구조에서의 전자 빔 리소그래피 공정을 위한 몬테 카를로 시뮬레이션 모델 개발)

  • 손명식
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.182-192
    • /
    • 2003
  • A new Monte Carlo (MC) simulator for electron beam lithography process in the multi-layer resists and compound semiconductor substrates has been developed in order to fabricate and develop the high-speed PHEMT devices for millimeter-wave frequencies. For the accurate and efficient calculation of the transferred and deposited energy distribution to the multi-component and multi-layer targets by electron beams, we newly modeled for the multi-layer resists and heterogeneous multi-layer substrates. By this model, the T-shaped gate fabrication process by electron beam lithography in the PHEMT device has been simulated and analyzed. The simulation results are shown along with the SEM observations in the T-gate formation process, which verifies the new model in this paper.

A Simulator for High Energy E-beam Lithography for Nano-Patterning (나노패터닝을 위한 고에너지 전자빔 리소그래피 시뮬레이터 개발 및 검증)

  • Kim Jinkwang;Kim Hak;Han Chanho;Chun Kukjin
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.359-362
    • /
    • 2004
  • Electron beam on high energy acceleration, which travels deeply and sharply through photoresist, became to be used in e-beam lithography apparatus for nano-patterning in due to its high resolution. An advanced electron beam lithography simulation tool is currently undergoing development for nano-patterning. This paper will demonstrate such simulation efforts with experiments at 200 keV e-beam lithography processes on PMMA, ZEP520 of which photoresist parameters and characteristics will be explained with simulation results. Neureuther parameters was extracted from the contrast curve of the resist

  • PDF

Development of a Monte Carlo Simulator for Electron Beam Lithography in Multi-Layer Resists and Multi-Layer Substrates (다층 리지스트 다층 기판 구조에서의 전자빔 리소그래피 공정을 위한 몬테카를로 시뮬레이터의 개발)

  • 손명식;이진구;황호정
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.53-56
    • /
    • 2002
  • We have developed a Monte Carlo (MC) simulator for electron beam lithography in multi-layer resists and multi-layer substrates in order to fabricate and develop high-speed PHEMT devices for millimeter- wave applications. For the deposited energy calculation to multi-layer resists by electron beam in MC simulation, we modeled newly for multi-layer resists and heterogeneous multi-layer substrates. Using this model, we simulated T-gate or r-gate fabrication process in PHEMT device and showed our results with SEM observations.

  • PDF

Multiple Electron Beam Lithography for High Throughput (생산성 향상을 위한 멀티빔 리소그라피)

  • Choi, Sang-Kook;Yi, Cheon-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.235-238
    • /
    • 2005
  • A Multiple electron beam lithography system with arrayed microcolumns has been developed for high throughput applications. The small size of the microcolumn opens the possibility for arrayed operation on a scale commensurate. The arrayed microcolumns based on of Single Column Module (SCM) concept has been fabricated and successfully demonstrated. Low energy microcolumn lithography has been operated in the energy range from 250 eV to 300 eV for the generation of nano patterns. Probe beam current at the sample was measured about >1 nA at a total beam current of $0.5\;{\mu}A$ and a working distance of $\~1\;mm$. The magnitude of probe beam current is strong enough for the low energy lithography. The thin layers of PMMA resist have been employed. The results of nano-patterning by low energy microcolumn lithography will be discussed.

Fabrication of a Graphene Nanoribbon with Electron Beam Lithography Using a XR-1541/PMMA Lift-Off Process

  • Jeon, Sang-Chul;Kim, Young-Su;Lee, Dong-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.190-193
    • /
    • 2010
  • This report covers an effective fabrication method of graphene nanoribbon for top-gated field effect transistors (FETs) utilizing electron beam lithography with a bi-layer resists (XR-1541/poly methtyl methacrylate) process. To improve the variation of the gating properties of FETs, the residues of an e beam resist on the graphene channel are successfully taken off through the combination of reactive ion etching and a lift-off process for the XR-1541 bi-layer. In order to identify the presence of graphene structures, atomic force microscopy measurement and Raman spectrum analysis are performed. We believe that the lift-off process with bi-layer resists could be a good solution to increase gate dielectric properties toward the high quality of graphene FETs.

Study of SiO2 Thin Film Patterning by Low Energy Electron Beam Lithography Using Microcolumns (저 에너지 초소형 전자칼럼 리소그래피를 이용한 SiO2 박막의 Pattern 제작에 관한 연구)

  • Yoshimoto, T.;Kim, H.S.;Kim, D.W.;Ahn, S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.178-181
    • /
    • 2007
  • Electron beam lithography has been studied as a next-generation lithography technology instead of photo lithography for ULSI semiconductor devices. In this work, we have made a low-energy electron beam lithography system based on the microcolumn and investigated the dependence of the pattern thickness on the energies and dose concentration of the electron beam. We have also demonstrated the potential of low-energy lithography by achieving 100 nm-$SiO_2$ thin film patterning.

Optimization of EID function for Proximity Effect in Electron Beam Lithography (저자-빔 Lithography 근접효과에 대한 노출강도 분포의 최적화법)

  • 손상희;곽계달
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.87-92
    • /
    • 1985
  • A simple method to derive EID function which is necessary to compensate for the pro-ximity effect in electron-beam lithography is presented. Using optimization techniques, parameters of EID function is derived and well agreed with experimental valuta.

  • PDF