DOI QR코드

DOI QR Code

Fabrication of a Graphene Nanoribbon with Electron Beam Lithography Using a XR-1541/PMMA Lift-Off Process

  • Jeon, Sang-Chul (Department of Nano Patterning Process, National NanoFab Center) ;
  • Kim, Young-Su (Department of Nano Patterning Process, National NanoFab Center) ;
  • Lee, Dong-Kyu (Department of Industrial Engineering Chemistry, Chungbuk National University)
  • Received : 2010.06.01
  • Accepted : 2010.07.09
  • Published : 2010.08.25

Abstract

This report covers an effective fabrication method of graphene nanoribbon for top-gated field effect transistors (FETs) utilizing electron beam lithography with a bi-layer resists (XR-1541/poly methtyl methacrylate) process. To improve the variation of the gating properties of FETs, the residues of an e beam resist on the graphene channel are successfully taken off through the combination of reactive ion etching and a lift-off process for the XR-1541 bi-layer. In order to identify the presence of graphene structures, atomic force microscopy measurement and Raman spectrum analysis are performed. We believe that the lift-off process with bi-layer resists could be a good solution to increase gate dielectric properties toward the high quality of graphene FETs.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005) [DOI: 10.1038/nature04233].
  2. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005) [DOI: 10.1038/nature04235].
  3. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Mater. 6, 652 (2007) [DOI: 10.1038/nmat1967].
  4. M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, IEEE Electron Device Lett. 28, 282 (2007) [DOI: 10.1109/LED.2007.891668].
  5. I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Nature Nanotech. 3, 654 (2008) [DOI: 10.1038/nnano.2008.268].
  6. S. Kim, J. Na, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, Appl. Phys. Lett. 94, 062107 (2009) [DOI: 10.1063/1.3077021].
  7. F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Nano Lett. 10, 715 (2010) [DOI: 10.1021/nl9039636].
  8. M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007) [DOI: 10.1103/PhysRevLett.98.206805].
  9. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008) [DOI: 10.1126/science.1150878].
  10. K. Brenner and R. Murali, Appl. Phys. Lett. 96, 063104 (2010) [DOI: 10.1063/1.3308482].
  11. H. Yang, A. Jin, Q. Luo, J. Li, C. Gu, and Z. Cui, Microelec. Eng. 85, 814 (2008) [DOI: 10.1016/j.mee.2008.01.006].
  12. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Gaim, Phys. Rev. Lett. 97, 187401 (2006) [DOI: 10.1103/Phys-RevLett.97.187401].

Cited by

  1. Patterning of graphene with tunable size and shape for microelectrode array devices vol.67, 2014, https://doi.org/10.1016/j.carbon.2013.10.009
  2. Numerical Study of Graphene Superlattice-Based Photodetectors vol.62, pp.2, 2015, https://doi.org/10.1109/TED.2014.2383354
  3. Graphene nanoribbons: fabrication, properties and devices vol.49, pp.14, 2016, https://doi.org/10.1088/0022-3727/49/14/143001
  4. Engineering of Bi-/Mono-layer Graphene Film Using Reactive Ion Etching vol.16, pp.4, 2015, https://doi.org/10.4313/TEEM.2015.16.4.169
  5. Hydrogen silsesquioxane bilayer resists—Combining high resolution electron beam lithography and gentle resist removal vol.31, pp.6, 2013, https://doi.org/10.1116/1.4822136
  6. Mode III Fracture Toughness of Single Layer Graphene Sheet Using Molecular Mechanics vol.38, pp.2, 2014, https://doi.org/10.3795/KSME-A.2014.38.2.121
  7. Laser ablation- and plasma etching-based patterning of graphene on silicon-on-insulator waveguides vol.23, pp.20, 2015, https://doi.org/10.1364/OE.23.026639
  8. Study of Stability of Local Anodic Oxidation on HOPG and Few Layer Graphene Using AFM in Ambient vol.12, pp.6, 2013, https://doi.org/10.1109/TNANO.2013.2274900
  9. Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors vol.10, pp.4, 2019, https://doi.org/10.1039/C8SC03780A