• 제목/요약/키워드: Electroless Cu

검색결과 197건 처리시간 0.031초

인쇄회로기판(PCB) 표면처리를 위한 무전해 CoP 도금액 개발 (Development of electroless CoP plating solution for PCB surface finishing)

  • 이홍기;전준미;구석본;손양수
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.132-132
    • /
    • 2013
  • 본 연구는 R/F-PCB(Rigid/Flexible Printed circuit Board)의 Cu Pattern에 최종 표면처리 방법으로 사용되는 ENIG(Electroless Ni/Immersion Gold) 공정을 대체하여 ECIG(Electroless Co/Immersion Gold)공정을 적용하고자 하는 것으로 무전해 니켈 도금의 장점인 고경도, 내마모성, 납땜성, 내식성을 가지면서 니켈 도금의 취약점인 연성을 개선한 도금액을 개발하고자 하였다. 개발된 도금액을 이용하여 Cu Pattern에 도금할 경우 일반 무전해 니켈 도금에서 나타나는 불량 원인 중 하나인 Space 부분에 도금이 되는 현상이 현저히 감소하였으며, 연성 또한 향상됨을 관찰할 수 있었다.

  • PDF

감마선 자극에 의한 금속이온 이식 도전성 폴리머 (Surface Metallization of Polyethylene Films Modified by Radiation Grafting of N-vinyl Pyrollidone)

  • A. Aal;V. V. Khutoryanskiy;Z. S. Nurkeeva;G. A. Mun;Soh, Dea-Wha
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.403-406
    • /
    • 2003
  • Poyethylene(PE) films could be modified by radiation grafting of N-vinyl pyrollidone(NVP) using radiation. FTIR spectra was used to confirm the modification of PE films. The modified films were activated by one-step or two-step methods for electroless Cu plating. Morphology of metallized films has been investigated. Electroless Cu plating onto the modified films depends mainly on the grafting degree and activation type. The electrical conductivity and adhesion of the metallized films has been investigated and tested in regard of grafting degree of samples.

  • PDF

무전해 구리 도금액에서 착화제가 접합력에 미치는 영향에 대한 고찰 (Effect of Complexing Agents on Adhesion Strength between Electroless Copper Film and Ta Diffusion Barrier)

  • 이창면;전준미;허진영;이홍기
    • 한국표면공학회지
    • /
    • 제47권4호
    • /
    • pp.162-167
    • /
    • 2014
  • The primary purpose of this research is to investigate how much the complexing agent in electroless Cu electrolytes will affect adhesion strength between copper film and Ta diffusion barrier for Cu interconnect of semiconductor. The adhesion strength using rochelle's salt as complexing agent was higher than the case of using EDTA-4Na. Effect of complexing agent on adhesion strength and electrical resistivity was studied in crystal structural point of view.

무전해 니켈-구리-인 도금의 도금속도와 열처리에 따른 경도 및 내삭성 변화 (Plating Rate of Electroless Nikel-Copper-Phosphorus Plating and Change in Microhardness and Corrosion Rate depending on. Heat treatment)

  • 오이식;황용길
    • 한국표면공학회지
    • /
    • 제23권4호
    • /
    • pp.208-217
    • /
    • 1990
  • Electroless Ni-Cu-P plating was performed was performed to investigate for plating and changes in microhardness and corrosion rate of of electroless deposits depending on heat treatment. The activation energy for $75~85^{\circ}C$ were calculated to be 66.7KJ/mole. Plating rate increased to 34% with addition of 200ppm of NaF and 0.8ppm of thiourea to the bath. The highest hardness value was obtained by heat treatment deposits layer at$ 400^{\circ}C$, 1 hour. The increase in hardness of deposits by heating was confirmed to be associated with crystallization of the amorphous deposits. Corrosion resistance of deposir layer, which had been heated up to $300^{\circ}C$, was found to be exellent when immersed in 1N-H2SO4 solution, Change of the corrosion resistance seems to have some important bearing on content of amorpous, Ni3P and Cu3P.

  • PDF

기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구 (A Study on Nano/micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique)

  • 조상현;윤성원;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1507-1510
    • /
    • 2005
  • This study was carried out as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-\mu{m}-deep$ indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.49 GPa and 100 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46-0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined area during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

  • PDF

무전해도금 및 방전 플라즈마 소결을 이용한 구리/흑연 복합재료 제조 및 열물성 특성 평가 (Thermophysical Properties of Copper/graphite Flake Composites by Electroless Plating and Spark Plasma Sintering)

  • 이재성;강지연;김슬기;정찬회;이동주
    • 한국분말재료학회지
    • /
    • 제27권1호
    • /
    • pp.25-30
    • /
    • 2020
  • Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m-1K-1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10-6 to 3.06 × 10-6K-1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.

기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구 (A Study on Nano/Micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique)

  • 조상현;윤성원;강충길
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.171-177
    • /
    • 2006
  • This study was performed as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-{\mu}m$-deep indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.51 GPa and 104 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$ ) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46- 0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined are a during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

무전해 Ni-B 도금을 이용한 플라즈마 디스플레이 버스 전극용 확산방지막의 열처리 영향 (Effect of Heat Treatment of the Diffusion Barrier for Bus Electrode of Plasma Display by Electroless Ni-B Deposition)

  • 최재웅;황길호;홍석준;강성군
    • 한국재료학회지
    • /
    • 제14권8호
    • /
    • pp.552-557
    • /
    • 2004
  • Thin Ni-B films, 1 ${\mu}m$ thick, were electrolessly deposited on Cu bus electrode fabricated by electro deposition. The purpose of these films is to encapsulate Cu electrodes for preventing Cu oxidation and to serve as a diffusion barrier against copper contamination of dielectric layer in AC-plasma display panel. The layers were heat treated at $580^{\circ}C$(baking temperature of dielectric layer) with and without pre-annealing at $300^{\circ}C$($Ni_{3}B$ formation temperature) for 30 minutes. In the layer with pre-annealing, amount of Cu diffusion was lower about 5 times than that in the layer without pre-annealing. The difference of Cu concentration could be attributed to Cu diffusion before $Ni_{3}B$ formation at grain boundaries. However, the diffusion behavior of the layer with pre-annealing was similar to that of the layer without pre-annealing after $Ni_{3}B$ formation. With increasing annealing time, Cu concentration of both layers increased due to grain growth.

전기선폭발법에 의한 Cu-Ni-P 합금 나노 분말 제조 (Cu-Ni-P Alloy Nano Powders Prepared by Electrical Wire Explosion)

  • 김원백;박제신;서창열;이재천;김정환;오용준
    • 한국분말재료학회지
    • /
    • 제14권2호
    • /
    • pp.108-115
    • /
    • 2007
  • Cu-Ni-P alloy nano powders were fabricated by the electrical explosion of electroless Ni plated Cu wires. The effect of applied voltage on the explosion was examined by applying pulse voltage of 6 and 28 kV, The estimated overheating factor, K, were 1.3 for 6 kV and 2.2 for 28 kV. The powders produced with pulse voltage of 6 kV were composed of Cu-rich solid solution, Ni-rich solid solution, and $Ni_3P$ phase. While, those produced with 28 kV were complete Cu-Ni-P solid solution and small amount of $Ni_3P$ phase. The initial P content of 6.5 at.% was reduced to 2-3 at.% during explosion due to its high vapour pressure.

탄소 단섬유가 첨가된 Cu기지 복합재료의 섬유 분율 및 배열에 따른 열적 특성 (Thermal Properties according to Content and Alignment of Carbon Fiber in Cu Matrix Composite Reinforced with Chopped Carbon Fiber)

  • 김민경;한준현
    • 한국재료학회지
    • /
    • 제31권11호
    • /
    • pp.626-634
    • /
    • 2021
  • Cu matrix composites reinforced with chopped carbon fiber (CF), which is cost effective and can be well dispersed, are fabricated using electroless plating and hot pressing, and the effects of content and alignment of CF on the thermal properties of CF/Cu composites are studied. Thermal conductivity of CF/Cu composite increases with CF content in the in-plane direction, but it decreases above 10% CF; this is due to reduction of thermal diffusivity related with phonon scattering by agglomeration of CF. The coefficient of thermal expansion decreases in the in-plane direction and increases in the through-plane direction as the CF content increases. This is because the coefficient of thermal expansion of the long axis of CF is smaller than that of the Cu matrix, and the coefficient of thermal expansion of its short axis is larger than that of the Cu matrix. The thermal conductivity is greatly influenced by the agglomeration of CF in the CF/Cu composite, whereas the coefficient of thermal expansion is more influenced by the alignment of CF than the aggregation of CF.