Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.11.626

Thermal Properties according to Content and Alignment of Carbon Fiber in Cu Matrix Composite Reinforced with Chopped Carbon Fiber  

Kim, Minkyoung (Department of Materials Science and Engineering, Chungnam National University)
Han, Jun Hyun (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.31, no.11, 2021 , pp. 626-634 More about this Journal
Abstract
Cu matrix composites reinforced with chopped carbon fiber (CF), which is cost effective and can be well dispersed, are fabricated using electroless plating and hot pressing, and the effects of content and alignment of CF on the thermal properties of CF/Cu composites are studied. Thermal conductivity of CF/Cu composite increases with CF content in the in-plane direction, but it decreases above 10% CF; this is due to reduction of thermal diffusivity related with phonon scattering by agglomeration of CF. The coefficient of thermal expansion decreases in the in-plane direction and increases in the through-plane direction as the CF content increases. This is because the coefficient of thermal expansion of the long axis of CF is smaller than that of the Cu matrix, and the coefficient of thermal expansion of its short axis is larger than that of the Cu matrix. The thermal conductivity is greatly influenced by the agglomeration of CF in the CF/Cu composite, whereas the coefficient of thermal expansion is more influenced by the alignment of CF than the aggregation of CF.
Keywords
carbon fiber/copper composite; chopped carbon fiber; thermal conductivity; coefficient of thermal expansion; electroless plating;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Lee and Y. Choi, Compos. Sci. Technol., 97, 1 (2014).   DOI
2 X. Han and Y. Huang, Compos. Commun., 24, 100665 (2021).   DOI
3 R. Fan and Y. Huang, J. Alloys Compd., 858, 157630 (2021).   DOI
4 C. Wei and J. Tang, ACS Appl. Mater. Interfaces, 13, 21714 (2021).   DOI
5 Q. Liu and X. H. Qu, J. Alloys Compd., 587, 255 (2014).   DOI
6 X. Si and Q. Huang, Mater. Sci. Eng., 708, 311 (2017).   DOI
7 L. Xu, J. Liao and L. Huang, Thin Solid Films, 434, 121 (2003).   DOI
8 J. Shuai, L. Xiong, L. Zhu and W. Li, Compos. Appl. Sci. Manuf., 88, 148 (2016).   DOI
9 D. B. Xiong, M. Cao, Z. Li and D. Zhang, Sci. Rep., 6, 33801 (2016).   DOI
10 C. Subramaniam and K. Hata, Nanoscale, 11, 2089 (2019).   DOI
11 J. F. Silvain and C. Vincent, Compos. Sci. Technol., 69, 2474 (2009).   DOI
12 S. Zhou and F. Kang, Carbon, 50, 5052 (2012).   DOI
13 K. Pietrzak, A. Strojny-Nedza, J. Mater. Eng. Perform., 25, 3077 (2016).   DOI
14 H. B. Wang and Z. Tao, Appl. Surf. Sci., 439, 488 (2018).   DOI
15 S. R. Bakshi, D. Lahiri and A. Agarwal, Int. Mater. Rev., 55, 41 (2010).   DOI
16 C. P. Samal, J. S. Parihar and D. Chaira, J. Alloys Compd., 569, 95 (2013).   DOI
17 S. C. Tjong, Mater. Sci. Eng. R Rep., 74, 281 (2013).   DOI
18 D. J. Cleland and J. F. Wang, Int. J. Heat Transfer., 49, 3 (2006).   DOI
19 J. Y. Lee and J. H. Han, Mater. Today Commun., 25, 101450 (2020).   DOI
20 A. Shin and J. H. Han, J. Alloys Compd., 737, 15 (2018).
21 C. W. Nan and R. Birringer, J. Appl. Phys., 81, 6692 (1997).   DOI
22 C. W. Nan, Z. Shi and Y. Lin, Chem. Phys. Lett., 975, 666 (2003).
23 C. W. Nan, G. Liu, Y. Shin and M. Li, Appl. Phys. Lett., 85, 3549 (2004).   DOI
24 R. L. McCullough, Compos. Sci. Technol., 22, 3 (1985).   DOI
25 E. H. Kerner, Proc. Phys. Soc. B 69, 808 (1956).   DOI
26 P. S. Turner, J. Res. Nat. Bur. Stand., 37, 239 (1946).   DOI
27 S. J. Lovatt and J. K. Carson, Int. J. Heat Transfer., 48, 2150 (2005).   DOI
28 C. Zweben, J. Miner. Met. Mater. Soc., 50, 47 (1998).   DOI
29 P. K. Schelling and K. E. Goodson, Mater. Today, 8, 30 (2005)
30 M. Wissler, J. Power Sources, 156, 142 (2006).   DOI
31 D. Kim and H. Kwon, Materials, 14, 266 (2021).   DOI