Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.1.25

Thermophysical Properties of Copper/graphite Flake Composites by Electroless Plating and Spark Plasma Sintering  

Lee, Jaesung (Department of Advanced Materials Engineering, Chungbuk National University)
Kang, Ji Yeon (Department of Advanced Materials Engineering, Chungbuk National University)
Kim, Seulgi (Department of Advanced Materials Engineering, Chungbuk National University)
Jung, Chanhoe (MIRAEEP)
Lee, Dongju (Department of Advanced Materials Engineering, Chungbuk National University)
Publication Information
Journal of Powder Materials / v.27, no.1, 2020 , pp. 25-30 More about this Journal
Abstract
Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m-1K-1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10-6 to 3.06 × 10-6K-1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.
Keywords
Copper; Graphite; Electroless plating; Spark plasma sintering; Thermophysical property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Zweben: JOM, 50 (1998) 47.   DOI
2 P. M. Adams, H. A. Katzman, G. S. Rellick and G. W. Stupian: Carbon, 36 (1998) 233.   DOI
3 A. A. Balandin: Nat. Mater., 10 (2011) 569.   DOI
4 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau: Nano Lett., 8 (2008) 902.   DOI
5 J. Che, T. Cagin and W. A. Goddard: Nanotechnology, 11 (2000) 65.   DOI
6 C. F. Deng, Y. X. Ma, P. Zhang, X. X. Zhang and D. Z. Wang: Mater. Lett., 62 (2008) 2301.   DOI
7 E. Khaleghi, M. Torikachvili, M. A. Meyers and E. A. Olevsky: Mater. Lett., 79 (2012) 256.   DOI
8 R. Prieto, J. M. Molina, J. Narciso and E. Louis: Compos. Part A, 42 (2011) 1970.   DOI
9 R. Prieto, J. M. Molina, J. Narciso and E. Louis: Scripta Mater., 59 (2008) 11.   DOI
10 L. David, A. Feldman, E. Mansfield, J. Lehman and G. Singh: Sci. Rep., 4 (2014) 4311.   DOI
11 P. Goli, H. Ning, X. Li, C. Y. Lu, K. S. Novoselov and A. A. Balandin: Nano Lett., 14 (2014) 1497.   DOI
12 A. Li, C. Zhang and Y.-F. Zhang: Polymers, 9 (2017) 437.   DOI
13 G. Bai, N. Li, X. Wang, J. Wang, M. J. Kim and H. Zhang: J. Alloys Compd., 735 (2018) 1648.   DOI
14 J. He, X. Wang, Y. Zhang, Y. Zhao and H. Zhang: Compos. Part B, 68 (2015) 22.   DOI
15 C. Mattevi, H. Kim and M. Chhowalla: J. Mater. Chem., 21 (2011) 3324.   DOI
16 Y. Pan, X. He, S. Ren, M. Wu and X. Qu: Vacuum, 153 (2018) 74.   DOI
17 L. Wang, J. Li, Z. Che, X. Wang, H. Zhang, J. Wang and M. J. Kim: J. Alloys Compd., 749 (2018) 1098.   DOI
18 C.-W. Nan, R. Birringer, D. R. Clarke and H. Gleiter: J. Appl. Phys., 81 (1997) 6692.   DOI
19 K. T. Kim, S. I. Cha, T. Gemming, J. Eckert and S. H. Hong: Small, 4 (2008) 1936.   DOI
20 M. Park, B.-H. Kim, S. Kim, D.-S. Han, G. Kim and K.-R. Lee: Carbon, 49 (2011) 811.   DOI