DOI QR코드

DOI QR Code

Thermal Properties according to Content and Alignment of Carbon Fiber in Cu Matrix Composite Reinforced with Chopped Carbon Fiber

탄소 단섬유가 첨가된 Cu기지 복합재료의 섬유 분율 및 배열에 따른 열적 특성

  • Kim, Minkyoung (Department of Materials Science and Engineering, Chungnam National University) ;
  • Han, Jun Hyun (Department of Materials Science and Engineering, Chungnam National University)
  • 김민경 (충남대학교 신소재공학과) ;
  • 한준현 (충남대학교 신소재공학과)
  • Received : 2021.09.29
  • Accepted : 2021.10.19
  • Published : 2021.11.27

Abstract

Cu matrix composites reinforced with chopped carbon fiber (CF), which is cost effective and can be well dispersed, are fabricated using electroless plating and hot pressing, and the effects of content and alignment of CF on the thermal properties of CF/Cu composites are studied. Thermal conductivity of CF/Cu composite increases with CF content in the in-plane direction, but it decreases above 10% CF; this is due to reduction of thermal diffusivity related with phonon scattering by agglomeration of CF. The coefficient of thermal expansion decreases in the in-plane direction and increases in the through-plane direction as the CF content increases. This is because the coefficient of thermal expansion of the long axis of CF is smaller than that of the Cu matrix, and the coefficient of thermal expansion of its short axis is larger than that of the Cu matrix. The thermal conductivity is greatly influenced by the agglomeration of CF in the CF/Cu composite, whereas the coefficient of thermal expansion is more influenced by the alignment of CF than the aggregation of CF.

Keywords

Acknowledgement

This work was supported by research fund of Chungnam National University.

References

  1. P. K. Schelling and K. E. Goodson, Mater. Today, 8, 30 (2005)
  2. M. Wissler, J. Power Sources, 156, 142 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.064
  3. C. Zweben, J. Miner. Met. Mater. Soc., 50, 47 (1998). https://doi.org/10.1007/s11837-998-0128-6
  4. X. Han and Y. Huang, Compos. Commun., 24, 100665 (2021). https://doi.org/10.1016/j.coco.2021.100665
  5. R. Fan and Y. Huang, J. Alloys Compd., 858, 157630 (2021). https://doi.org/10.1016/j.jallcom.2020.157630
  6. D. Kim and H. Kwon, Materials, 14, 266 (2021). https://doi.org/10.3390/ma14020266
  7. C. Wei and J. Tang, ACS Appl. Mater. Interfaces, 13, 21714 (2021). https://doi.org/10.1021/acsami.1c01519
  8. Q. Liu and X. H. Qu, J. Alloys Compd., 587, 255 (2014). https://doi.org/10.1016/j.jallcom.2013.09.207
  9. X. Si and Q. Huang, Mater. Sci. Eng., 708, 311 (2017). https://doi.org/10.1016/j.msea.2017.10.015
  10. L. Xu, J. Liao and L. Huang, Thin Solid Films, 434, 121 (2003). https://doi.org/10.1016/S0040-6090(03)00274-8
  11. J. Shuai, L. Xiong, L. Zhu and W. Li, Compos. Appl. Sci. Manuf., 88, 148 (2016). https://doi.org/10.1016/j.compositesa.2016.05.027
  12. D. B. Xiong, M. Cao, Z. Li and D. Zhang, Sci. Rep., 6, 33801 (2016). https://doi.org/10.1038/srep33801
  13. C. Subramaniam and K. Hata, Nanoscale, 11, 2089 (2019). https://doi.org/10.1039/C9NR90011J
  14. C. P. Samal, J. S. Parihar and D. Chaira, J. Alloys Compd., 569, 95 (2013). https://doi.org/10.1016/j.jallcom.2013.03.122
  15. J. F. Silvain and C. Vincent, Compos. Sci. Technol., 69, 2474 (2009). https://doi.org/10.1016/j.compscitech.2009.06.023
  16. S. Zhou and F. Kang, Carbon, 50, 5052 (2012). https://doi.org/10.1016/j.carbon.2012.06.045
  17. K. Pietrzak, A. Strojny-Nedza, J. Mater. Eng. Perform., 25, 3077 (2016). https://doi.org/10.1007/s11665-015-1851-0
  18. H. B. Wang and Z. Tao, Appl. Surf. Sci., 439, 488 (2018). https://doi.org/10.1016/j.apsusc.2018.01.035
  19. M. Lee and Y. Choi, Compos. Sci. Technol., 97, 1 (2014). https://doi.org/10.1016/j.compscitech.2014.03.022
  20. S. R. Bakshi, D. Lahiri and A. Agarwal, Int. Mater. Rev., 55, 41 (2010). https://doi.org/10.1179/095066009X12572530170543
  21. S. C. Tjong, Mater. Sci. Eng. R Rep., 74, 281 (2013). https://doi.org/10.1016/j.mser.2013.08.001
  22. J. Y. Lee and J. H. Han, Mater. Today Commun., 25, 101450 (2020). https://doi.org/10.1016/j.mtcomm.2020.101450
  23. A. Shin and J. H. Han, J. Alloys Compd., 737, 15 (2018).
  24. D. J. Cleland and J. F. Wang, Int. J. Heat Transfer., 49, 3 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.023
  25. S. J. Lovatt and J. K. Carson, Int. J. Heat Transfer., 48, 2150 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.032
  26. C. W. Nan and R. Birringer, J. Appl. Phys., 81, 6692 (1997). https://doi.org/10.1063/1.365209
  27. C. W. Nan, Z. Shi and Y. Lin, Chem. Phys. Lett., 975, 666 (2003).
  28. C. W. Nan, G. Liu, Y. Shin and M. Li, Appl. Phys. Lett., 85, 3549 (2004). https://doi.org/10.1063/1.1808874
  29. R. L. McCullough, Compos. Sci. Technol., 22, 3 (1985). https://doi.org/10.1016/0266-3538(85)90087-9
  30. E. H. Kerner, Proc. Phys. Soc. B 69, 808 (1956). https://doi.org/10.1088/0370-1301/69/8/305
  31. P. S. Turner, J. Res. Nat. Bur. Stand., 37, 239 (1946). https://doi.org/10.6028/jres.037.015