• Title/Summary/Keyword: Electrode Lengths

Search Result 32, Processing Time 0.035 seconds

Ozone Generation Characteristics by Surface-Silent Discharge According to the Length of Coaxial Electrode (동축형 전극길이 변화시의 연면무성방전에 의한 오존발생특성(I))

  • Jo, Guk-Hui;Kim, Yeong-Bae;Seo, Gil-Su;Lee, Hyeong-Ho;Lee, Sang-Geun;Lee, Gwang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.12
    • /
    • pp.791-797
    • /
    • 1999
  • Recently the ozone generation system is well used for cleaning the contaminated water by using the strong oxidization effects of ozone. In this paper the concentration, yield and generation quantity of the ozone by the Surface-Silent Discharge According to the Length of Coaxial Electrode is described. The electrodes composed of 3 electrodes-2 gaps are coaxial type and the ozone generation tube were designed and fabricated from the point of view of the energy efficiency, stability and easy control. To investigate the ozone generation dependency on electrode length, a few discharge tubes with different lengths were fabricated. The experimental equipments were provided with cooling system and dehumidifier for the many testing conditions. The main results show that the concentration, yield and generation quantity of ozone are improved by decreasing gas temperatures and increasing electrode lengths.

  • PDF

IBS electrode structure for enhanced performance in ac PDP

  • Yang, Seung-Hee;Moon, Jae-Seung;Kim, Kwang-Nyun;Moon, Cheol-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.589-592
    • /
    • 2007
  • In this paper, we propose IBS(ITO-BUS Separated) electrode structure. BUS electrode lines are placed apart from the ITO electrode lines, and they are electrically connected with vertical auxiliary electrodes. We varied the lengths of the vertical electrodes as 70, 120, 320um. The highest luminous efficiency and the largest IR emission peak were obtained for 70um length.

  • PDF

A Numerica analysis on the lift-off motion of Free Conducting Particle in GIS (GIS내에 함유된 자유 도전성 파티클의 거동해석)

  • Lee, Bang-Wook;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1925-1928
    • /
    • 1996
  • In this work, the behavior of conducting wire type particles existing inside the cylinder type coaxial electrode has been systematically investigated by charge simulation method and electrostatic force analysis from the view point of the acquired charging before being lifted off into the gap under the high ac voltage. Spheroidal charge are adopted as a image charge for the CSM analysis in order to calculate the acquired charges of the particles which are erected on the surface of the outer electrode. For this purpose, different material of the particle and their lengths and diameters have been considered in view to calculate their lift-off field, acquired charge and to understand their effect on the lift-off voltage. The results imply that the particle lengths and diameter have an different influence on the particle behavior in GIS system.

  • PDF

Computation of Critical Length for Vertical Grounding Electrode and Counterpoise (수직접지전극의 임계길이 산정)

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Li, Feng;Lee, Seung-Ju;Kim, Jong-Ho;Lee, Gang-Su;Kim, Ki-Bok;Kim, Tae-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1491_1492
    • /
    • 2009
  • The impedance of a vertical grounding electrode is not lowered by expanding the dimension of the grounding electrode, and the length of thr vertical grounding electrode which shows the minimum value of the grounding impedance for each condition of frequency and soil characteristics is existent, and it is defined as Critical length. In this paper, the critical lengths for the vertical grounding electrodes are calculated by using the distributed parameter circuit model. The adequacy of the simulations has been confirmed by comparing the simulated results with the measured results.

  • PDF

DNA Length Dependent Photocurrent of Diketopyrrolopyrrole Aggregates Constructed with DNA

  • Nakamura, Mitsunobu;Tsuto, Koji;Takada, Tadao;Yamana, Kazushige
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.67-69
    • /
    • 2014
  • Bis(2-thienyl)-diketopyrrolopyrrole having two $Zn^{II}$-cylcens (DPPCy) was synthesized. DPP-aggregates were constructed by self-organization of DPPCy and $dT_n$-DNAs. In the presence of L-ascorbic acid as an electron sacrifice reagent, the DPP aggregates immobilized on a gold electrode exhibit good anodic photocurrent responses as well as cathodic photocurrent responses in the presence of methyl viologen. The anodic photocurrent responses depend on the DNA lengths because of the formation of uniform DPP-aggregates corresponding to the DNA lengths. The present results show that photocurrent responses of the DPP-aggregates can be controlled by DNA lengths and electron sacrifice reagents.

Influence of Conducting Particle on the Breakdown Phenomena of $SF_6$ gas in Gas Insulated System ([$SF_6$] 가스 절연기기내에 도전성 금속이물 존재시 섬락전압에 미치는 영향)

  • Lee, B.W.;Ham, G.H.;Kim, I.S.;Koo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1687-1689
    • /
    • 1998
  • In this work, the behaviours of conducting wire type particles within the coaxial electrode gap energized with high ac voltage have been systematically investigated using charge simulation method. For this, spheroidal charge is adopted as a image charge for the CSM analysis in order to calculate the acquired charge of the particles which are erected on the surface of the outer electrode. For this purpose, the effects of the lengths and diameters of Cu, Al particles in gas insulated system have been studied by a numerical computation and particle lifting voltage, lifting field, breakdown voltage, acquired charge and travelling distance have been considered. From this, we understand that the particle behaviours have different characteristics according to the particle lengths and diameters. And a possible countermeasure, based on the proposed simulation, has been provided with a view to estimating the flashover voltage of $SF_6$ gas under the 1 atm.

  • PDF

Simulated Analysis for the Transient Impedance Behaviors of Counterpoises Subjected to the Impulsive Currents (임펄스전류에 의한 매설지선의 과도임피던스특성에 대한 모의해석)

  • Joe, Jeong-Hyeon;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1861-1868
    • /
    • 2009
  • A ground electrode subjected to lightning surge current shows the transient impedance behaviors. The ground electrode for protection against lightning should be evaluated in view of the transient grounding impedance and conventional grounding impedance, not ground resistance. The transient impedance characteristics of ground electrodes are influenced by the shape of ground electrode and the soil characteristics, as well as the waveform of lightning surge current. In order to propose a simulation method of analyzing the transient impedance characteristics of the grounding system in practical use, this paper suggests a theoretical analysis method of distributed parameter circuit model to simulate the transient impedance characteristics of counterpoise subjected to lightning surge current. EMTP and Matlab programs were employed to compute the transient grounding impedances of three counterpoises with different lengths. As a consequence, the simulated results using the proposed distributed parameter circuit model are in good agreement with the measured results.

2D Layered Ti3C2Tx Negative Electrode based Activated Carbon Woven Fabric for Structural Lithium Ion Battery (카본우븐패브릭 기반 2D 구조의 Ti3C2Tx 배터리음극소재)

  • Nam, Sanghee;Umrao, Sima;Oh, Saewoong;Oh, Il-Kwon
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.296-300
    • /
    • 2019
  • Two dimensional transition metal carbides and/or nitrides, known as MXenes, are a promising electrode material in energy storage due to their excellent electrical conductivity, outstanding electrochemical performance, and abundant functional groups on the surface. Use of $Ti_3C_2$ as electrode material has significantly enhanced electrochemical performance by providing more chemically active interfaces, short ion-diffusion lengths, and improved charge transport kinetics. Here, we reports the efficient method to synthesize $Ti_3C_2$ from MAX phase, and opens new avenues for developing MXene based electrode materials for Lithium-Ion batteries.

Effects of Length of Down Conductor on Transient Ground Impedance (인하도선 길이에 따른 과도접지임피던스 특성)

  • Lee, B.H.;Jeong, D.C.;Lee, S.B.;Lee, T.H.;Jung, H.U.;Lee, K.S.;Lee, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2235-2237
    • /
    • 2005
  • This paper presents the transient impedance behaviors of grounding systems to lightning impulse current. The potential rise and effective impulse ground impedance of the test grounding electrodes were measured as a function of the rise time of impulse currents and lengths of down conductor. The transient ground impedances strongly depend on the configuration and size of grounding electrodes, the impulse current shapes and lengths of down conductor, and the inductance of reduce of grounding electrode inductance is an important factor to improve the transient ground impedance.

  • PDF

Penetration Efficiency of Charged Particles in a Cylindrical Tube Connection with Electrical Voltage Difference

  • Song, Dong-Keun;Kim, Tae-Oh
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E1
    • /
    • pp.29-38
    • /
    • 2007
  • A cylindrical tube connection that has a voltage difference and is separated electrically by an insulator was modelled. The penetration efficiencies of charged particles passing through the connector tube were investigated. Typically, as the particle size decreases and the applied voltage difference increases, the penetration efficiency decreases. To assess the effect of the electrode geometry, various lengths of electric insulator and aerosol flow rate with a fixed tube length and tube diameter were used when calculating penetration efficiencies. The comparison of penetration efficiencies for various electrode geometry setups suggests that the penetration efficiency can be described as a function of the product of applied voltage and electrical mobility of charged particles. The diffusion loss from this and previous studies are compared. Further, an explicit form for penetration efficiency is provided as a function of a new non-dimensional parameter, $Es(=Z_pV/U_{avg}W);\;P_{es}=0.2{\cdot}{\exp}(-Es/0.6342)+0.8{\cdot}{\exp}(-Es/4.7914)$.