DOI QR코드

DOI QR Code

카본우븐패브릭 기반 2D 구조의 Ti3C2Tx 배터리음극소재

2D Layered Ti3C2Tx Negative Electrode based Activated Carbon Woven Fabric for Structural Lithium Ion Battery

  • Nam, Sanghee (Department of Mechanical Engineering, KAIST) ;
  • Umrao, Sima (Department of Mechanical Engineering, KAIST) ;
  • Oh, Saewoong (Department of Mechanical Engineering, KAIST) ;
  • Oh, Il-Kwon (Department of Mechanical Engineering, KAIST)
  • 투고 : 2019.03.26
  • 심사 : 2019.10.30
  • 발행 : 2019.10.31

초록

2D 전이금속 탄화물(MXenes) 가운데, 타이타늄 기반의 $Ti_3C_2$는 뛰어난 전기전도성과 전기화학적 특성 및 표면작용기의 영향으로 이차 전지와 슈퍼캐패시터와 같은 에너지저장장치의 유망한 전극 물질로 각광받고 있다. 전극으로서 $Ti_3C_2$의 사용은 이온이 반응할 수 있는 표면적을 넓혀줄 뿐만 아니라, 이온의 확산 거리를 줄여주고, 전하의 운동을 향상시켜준다. 이 연구에서, 효율적으로 MAX phase로부터 $Ti_3C_2$를 합성하는 방법을 통해 리튬이온배터리에서 MXene기반의 전극 물질을 위한 새로운 방향을 제시하고자 한다.

Two dimensional transition metal carbides and/or nitrides, known as MXenes, are a promising electrode material in energy storage due to their excellent electrical conductivity, outstanding electrochemical performance, and abundant functional groups on the surface. Use of $Ti_3C_2$ as electrode material has significantly enhanced electrochemical performance by providing more chemically active interfaces, short ion-diffusion lengths, and improved charge transport kinetics. Here, we reports the efficient method to synthesize $Ti_3C_2$ from MAX phase, and opens new avenues for developing MXene based electrode materials for Lithium-Ion batteries.

키워드

참고문헌

  1. Dunn, B., Kamath, H., and Tarascon, J., "Electrical Energy Storage for the Grid: A Battery of Choices," Science, Vol. 334, Iss. 6058, 2011, pp. 928-935. https://doi.org/10.1126/science.1212741
  2. Salanne, M., Rotenberg, B., Naoi, K., Kaneko, K., Taberna, P.L., Grey, C.P., Dunn, B., and Simon, P., "Efficient Storage Mechanisms for Building Better Supercapacitors," Nature Energy, Vol. 1, Iss. 6, 2016.
  3. Nitta, N., Wu, F., Lee, J.T., and Yushin, G., "Li-ion Battery Materials: Present and Future", Materials Today, Vol. 18, Iss. 5, 2015, pp. 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
  4. Zhu, J., Yang, D., Yin, Z., Yan, Q., and Zhang, H., "Graphene and Graphene-Based Materials for Energy Storage Applications," Small, Vol. 10, Iss. 17, 2014, pp. 3480-3498. https://doi.org/10.1002/smll.201303202
  5. Sheberla, D., Bachman, J.C., Elias, J.S., Sun, C.J., Shao-Horn, Y., and Dinca, M., "Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance," Nature Energy, Vol. 16, Iss. 2, 2016, pp. 220-224.
  6. Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., and Pellegrini, V., "Graphene, Related Two-dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage," Science, Vol. 347, Issue 6217, 2015.
  7. Anasori, B., Lukatskaya, M.R., and Gogotsi, Y., "2D Metal Carbides and Nitrides (MXenes) for Energy Storage," Nature Reviews Materials, Vol. 2, Iss. 2, 2017.
  8. Wang, X., Kajiyama, S., Iinuma, H., Hosono, E., Oro, S., Moriguchi, I., Okubo, M., and Yamada, A., "Pseudocapacitance of MXene Nanosheets for High-power Sodium-ion Hybrid Capacitors," Nature Communications, Vol. 6, Iss. 1, 2015.
  9. Chen, D., Chen, W., Ma, L., Ji, G., Chang, and K., Lee, J.Y., "Graphene-like Layered Metal Dichalcogenide/graphene Composites: Synthesis and Applications in Energy Storage and Conversion," Materials Today, Vol. 17, Iss. 4, 2014, pp. 184-193 https://doi.org/10.1016/j.mattod.2014.04.001
  10. Pan, H., Hu, Y.S., and Chen, L., "Room-temperature Stationary Sodium-ion Batteries for Large-scale Electric Energy Storage," Energy & Environmental Science, Vol. 6, Iss. 8, 2013, pp. 2338. https://doi.org/10.1039/c3ee40847g
  11. Shein, I.R., and Ivanovskii, A.L., "Graphene-like Nanocarbides and Nanonitrides of d Metals (MXenes): Synthesis, Properties and Simulation," Micro & Nano Letters, Vol. 8, Iss. 2, 2013, pp. 59-62. https://doi.org/10.1049/mnl.2012.0797
  12. Ivanovskii, A.L., and Enyashin, A.N., "Graphene-like Transition-metal Nanocarbides and Nanonitrides," Russian Chemical Reviews, Vol. 82, Iss. 8, 2013, pp. 735-746. https://doi.org/10.1070/RC2013v082n08ABEH004398
  13. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., and Barsoum, M.W., "Two-Dimensional Nanocrystals Produced by Exfoliation of $Ti_3AlC_2$," Advanced Materials, Vol. 23, Iss. 37, 2011, pp. 4248-4253. https://doi.org/10.1002/adma.201102306
  14. Li, R., Zhang, L., Shi, L., and Wang, P., "MXene $Ti_3C_2$: An Effective 2D Light-to-Heat Conversion Material," ACS Nano, Vol. 11, Iss. 4, 2017, pp. 3752-3759. https://doi.org/10.1021/acsnano.6b08415
  15. Xie, Y., Naguib, M., Mochalin, V.N., Barsoum, M.W., Y. Gogotsi, X. Yu, Nam, K.W., Yang, X.Q., Kolesnikov, A.I., and Kent, P.R.C., "Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides," Journal of the American Chemical Society, Vol. 136, Iss. 17, 2014, pp. 6385-6394. https://doi.org/10.1021/ja501520b
  16. Xie, Y., Dall'Agnese, Y., Naguib, M., Gogotsi, Y., Barsoum, M.W., Zhuang, H.L., and Kent, P.R.C., "Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries," ACS Nano, Vol. 8, Iss. 9, 2014, pp. 9606-9615. https://doi.org/10.1021/nn503921j
  17. Er, D., Li, J., Naguib, M., Gogotsi, Y., and Shenoy, V.B., "$Ti_3C_2$ MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries," ACS Applied Materials & Interfaces, Vol. 6, Iss. 14, 2014, pp. 11173-11179. https://doi.org/10.1021/am501144q
  18. Peng, Q., Guo, J., Zhang, Q., Xiang, J., Liu, B., Zhou, A., Liu, R., and Tian, Y., "Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide," Journal of the American Chemical Society, Vol. 136, Iss. 11, 2014, pp. 4113-4116. https://doi.org/10.1021/ja500506k
  19. Dillon, A.D., Ghidiu, M.J., Krick, A.L., Griggs, J., May, S.J., Gogotsi, Y., Barsoum, M.W., and Fafarman, A.T., "Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide," Advanced Functional Materials, Vol. 26, Issue 23 2016, pp. 4162-4168. https://doi.org/10.1002/adfm.201600357
  20. Ghidiu, M., Lukatskaya M.R., Zhao M.Q., Gogotsi, Y., and Barsoum, M.W., "Conductive Two-dimensional Titanium Carbide 'clay' with High Volumetric Capacitance", Nature, Vol. 516, 2015, pp. 78. https://doi.org/10.1038/nature13970
  21. Tang, Q., Zhou, Z., and Shen, P., "Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of $Ti_3C_2$ and $Ti_3C_2X_2$ (X=F, OH) Monolayer", Journal of the American Chemical Society, Vol. 134, Iss. 40, 2012, pp. 16909-16916. https://doi.org/10.1021/ja308463r
  22. Yamada, T., Zettsu, N., Kim, D., Shiiba, H., Teshima, K., Sanchez-Santolino, G., Ishikawa, R., Ikuhara, Y., and Kimijima, T., "Full Picture Discovery for Mixed-fluorine Anion Effects on High-voltage Spinel Lithium Nickel Manganese Oxide Cathodes", Journal Article Published in NPG Asia Materials, Vol. 9, 2017, pp. 398-398. https://doi.org/10.1038/am.2017.90
  23. Zuo, T.T., Wu, X.W., Yang, C.P., Yin, Y.X., Ye, H. Li, N.W., and Guo, Y.G., "Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes", Advanced Materials, Vol. 29, 2017, pp. 1700389. https://doi.org/10.1002/adma.201700389
  24. Hsu, C.H., Lin, H.H. Liu, Y.H., and Lin, H.P., "Carbon Fibers as Three-Dimensional Current Collectors for Silicon/Reduced Graphene Oxide Lithium Ion Battery Anode with Improved Rate Performance and Cycle Life", New Journal of Chemistry, Vol. 42, 2018, pp. 9058-9064. https://doi.org/10.1039/C8NJ01137K
  25. Chen, P., Bakenov, Z., Wang, Q., Zhang, Y., Zhao, Y., and Konarov, A., "Three-dimensional Carbon Fiber as Current Collector for Lithium/sulfur Batteries", Ionics, Vol. 20, Iss. 6, 2014, pp. 803-808. https://doi.org/10.1007/s11581-013-1042-7
  26. Anasori, B., Lukatskaya, M.R., and Gogotsi, Y., "2D Metal Carbides and Nitrides (MXenes) for Energy Storage", Nature Reviews Materials Vol. 2, 2017, pp. 16098. https://doi.org/10.1038/natrevmats.2016.98
  27. Jin, Q., Zhang, N., Zhu, C.C., Gao H., and Zhang, X.T., "Rationally Designing $S/Ti_3C_2Tx$ as a Cathode Material with an Interlayer for High-rate and Long-cycle Lithium-sulfur Batteries", Nanoscale, Vol. 10, 2018, pp. 16935. https://doi.org/10.1039/C8NR05749D
  28. Mendoza-Sanchez, B., and Gogotsi, Y., "Synthesis of Two-Dimensional Materials for Capacitive Energy Storage", Advanced Materials, Vol. 28, Iss. 29, 2016, pp. 6104-6135. https://doi.org/10.1002/adma.201506133
  29. Yu, X.Q., Sun, J.P., Tang, K., Li, H., Huang, X.J., Dupont, L., and Maier, J., "Reversible Lithium Storage in LiF/Ti Nanocomposites", Physical Chemistry Chemical Physics, Vol. 11, 2009, pp. 9497. https://doi.org/10.1039/b908149f