Browse > Article

Penetration Efficiency of Charged Particles in a Cylindrical Tube Connection with Electrical Voltage Difference  

Song, Dong-Keun (School of Civil and Environmental Engineering, Kumoh National Institute of Technology)
Kim, Tae-Oh (School of Civil and Environmental Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.23, no.E1, 2007 , pp. 29-38 More about this Journal
Abstract
A cylindrical tube connection that has a voltage difference and is separated electrically by an insulator was modelled. The penetration efficiencies of charged particles passing through the connector tube were investigated. Typically, as the particle size decreases and the applied voltage difference increases, the penetration efficiency decreases. To assess the effect of the electrode geometry, various lengths of electric insulator and aerosol flow rate with a fixed tube length and tube diameter were used when calculating penetration efficiencies. The comparison of penetration efficiencies for various electrode geometry setups suggests that the penetration efficiency can be described as a function of the product of applied voltage and electrical mobility of charged particles. The diffusion loss from this and previous studies are compared. Further, an explicit form for penetration efficiency is provided as a function of a new non-dimensional parameter, $Es(=Z_pV/U_{avg}W);\;P_{es}=0.2{\cdot}{\exp}(-Es/0.6342)+0.8{\cdot}{\exp}(-Es/4.7914)$.
Keywords
Penetration efficiency; Electrostatic loss; Diffusion loss; Tube connection; Voltage difference;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Allen, M.D. and O.G. Raabe (1982) Re-Evaluation of Millikan's Oil Drop Data for the Motion of Small Particles in Air. J. Aerosol Sci., 13, 537-547   DOI   ScienceOn
2 Bae, G.N., M.C. Kim, D.Y. Lim, K.C. Moon, and N.J. Baik (2003) Characteristics of urban aerosol number size distribution in Seoul during the winter season of 2001. J. KOSAE, 19(2), 167-177
3 Ermak, D.L. and H. Buckholz (1980) Numerical integration of the Langevin equation: Monte Carlo simulation. J. Comp. Phys., 35, 169-182   DOI   ScienceOn
4 Friedlander, S.K. (1977) Smoke, Dust, and Haze. Wiley, New York, p. 77
5 Kousaka, Y., K. Okuyama, M. Adachi, and T. Mimura (1986) Effect of Brownian diffusion on electrical classification of ultrafine aerosol particles in differential mobility analyzer. J. Chem. Eng. Jpn., 19(5), 401-407   DOI
6 Park, D.S., T.O. Kim, and D.S. Kim (2003) An analysis of characteristics of particulate matter exhausted from diesel locomotive engines. J. KOSAE, 19(2), 133-143
7 Petaja, T., G. Mordas, H. Manninen, P.P. Aalto, K. Hameri, and M. Kulmala (2006) Detection efficiency of a water-based TSI condensation particle counter 3785. Aerosol Sci. Technol., 40(12), 1090-1097   DOI   ScienceOn
8 Tu, K.W. and E.O. Knutson (1984) Total deposition of ultrafine hydrophobic and hygroscopic aerosols in the human respiratory system. Aerosol Sci. Technol., 3, 453-465   DOI   ScienceOn
9 Wichmann, H.-E. and A. Peters (2000) Epidemiological evidence of the effects of ultrafine particle exposure. Phil. Trans. R. Soc. Lond. A, 358, 2751-2769   DOI   ScienceOn
10 Woo, K.S., D.-R. Chen, D.Y.H. Pui, and P.H. McMurry (2001) Measurement of Atlanta aerosol size distributions: Observations of ultrafine particle events. Aerosol Sci. Technol., 34, 75-87   DOI   ScienceOn
11 Schiller, C.F., J. Gebhart, J. Heder, G. Rudolf, and W. Stahlhofen (1986) Factors influencing total deposition of ultrafine aerosol particles in the human respiratory tract. J. Aerosol Sci., 17, 328-332   DOI   ScienceOn
12 Donaldson, K., X.Y. Liu, and W. MacNee (1998) Ultrafine (nanometer) particle mediated lung injury. J. Aerosol Sci., 29, 553-560   DOI   ScienceOn
13 Myojo, T., S. Ikawa, H. Sakae, and N. Koyama (2001) A new long DMA and its performance for sizemeasurement of 1 ${\mu}m$ Polystyrene latex particles. J. Jpn. Air Cleaning Assoc., 39, 34-41
14 Song, D.K. and S. Dhaniyala (2007) Change in distributions of particle positions by Brownian diffusion in a non-uniform external field. J. Aerosol Sci., 38(4), 444-454   DOI   ScienceOn
15 Vincent, J.H. and C.F. Clement (2000) Ultrafine particles in workplace atmospheres. Phil. Trans. R. Soc. Lond. A, 358, 2673-2682   DOI   ScienceOn
16 Kittelson, D.B. (1998) Engines and nanoparticles. J. Aerosol Sci., 29, 575-585   DOI   ScienceOn
17 Wilson Jr, F.J., F.C. Hiller, J.D. Wilson, and R.C. Bone (1985) Quantitative deposition of ultrafine stable particles in the human respiratory tract. J. Appl. Physiol., 58, 223-229   DOI
18 Zhang, S.-H. and R.C. Flagan (1996) Resolution of the radial differential mobility analyzer for ultrafine particles. J. Aerosol Sci., 27(8), 1179-1200   DOI   ScienceOn
19 Chen, D.-R., D.Y.H. Pui, D. Hummes, H. Fissan, F.R. Quant, and G.J. Sem(1998) Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J. Aerosol Sci., 29(5/6), 497-509   DOI   ScienceOn
20 Keskinen, M., K. Pietarinen, and M. Lehtimaki (1992) Electrical low pressure impactor. J. Aerosol Sci., 4, 353-360
21 Oberdorster, G., R. Gelein, J. Ferin, and B. Weiss (1995) Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhalation Toxicology, 71, 111-124
22 Lee, J.W., H.S. Kim, and Y.I. Jeong (2006) Effects of particle measuring conditions on diesel nanoparticles distribution. J. KOSAE, 22(5), 653-660   과학기술학회마을
23 Song, D.K., H. Chang, S.S. Kim, and K. Okuyama (2005) Numerical evaluation of the transfer function of a low pressure DMA by using the Langevin dynamic equation. Aerosol Sci. Technol., 39(8), 701-712   DOI   ScienceOn
24 Oberdorster, G., J. Ferin, R. Gelein, S. Soderholm, and J. Finkelstein (1992) Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environmental Health Perspectives, 97, 193-199   DOI
25 Song, D.K., H.M. Lee, H. Chang, S.S. Kim, M. Shimada, and K. Okuyama (2006) Performance evaluation of long differential mobility analyzer (LDMA) in measurements of nanoparticles. J. Aerosol Sci., 37(5), 598-615   DOI   ScienceOn
26 Wang, J., R.C. Flagan, and J.H. Seinfeld (2002) Diffusional losses in particle sampling systems containing bends and elbows. J. Aerosol Sci., 33, 843-857   DOI   ScienceOn
27 Shimada, M., H.M. Lee, C.S. Kim, H. Koyama, T. Myojo, and K. Okuyama (2005) Development of an LDMA-FCE System for the Measurement of Submicron Aerosol Particles. J. Chem. Eng. Jpn., 38(1), 34-44   DOI   ScienceOn
28 Collins, D.R., D.R. Cocker, R.C. Flagan, and J.H. Seinfeld (2004) The scanning DMA transfer function. Aerosol Sci. Technol., 38, 833-850   DOI   ScienceOn
29 Jaques, P.A. and C.S. Kim(2000) Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhalation Toxicology, 12, 715-731   DOI
30 Kim, Y.M. and K.H Ahn (2005) Monitoring of airborne fine particle using SMPS in Ansan area. J. KOSAE, 21(3), 295-301   과학기술학회마을