• 제목/요약/키워드: Electrochemical stability

검색결과 650건 처리시간 0.026초

LSGM계 음극지지형 고체산화물 연료전지에 적용된 LDC 완충층의 효과 (Effect of the LDC Buffer Layer in LSGM-based Anode-supported SOFCs)

  • 송은화;정태주;김혜령;손지원;김병국;이종호;이해원
    • 한국세라믹학회지
    • /
    • 제44권12호
    • /
    • pp.710-714
    • /
    • 2007
  • LSGM$(La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{3-{\delta}})$ is the very promising electrolyte material for lower-temperature operation of SOFCs, especially when realized in anode-supported cells. But it is notorious for reacting with other cell components and resulting in the highly resistive reaction phases detrimental to cell performance. LDC$(La_{0.4}Ce_{0.6}O_{1.8})$, which is known to keep the interfacial stability between LSGM electrolyte and anode, was adopted in the anode-supported cell, and its effect on the interfacial reactivity and electrochemical performance of the cell was investigated. No severe interfacial reaction and corresponding resistive secondary phase was found in the cell with LDC buffer layer, and this is due to its ability to sustain the La chemical potential in LSGM. The cell exhibited the open circuit voltage of 0.64V, the maximum power density of 223 $mW/cm^2$, and the ohmic resistance of $0.17{\Omega}cm^2$ at $700^{\circ}C$. These values were much improved compared with those from the cell without any buffer layer, which implies that formation of the resistive reaction phases in LSGM and then deterioration of the cell performance is resulted mainly from the La diffusion from LSGM electrolyte to anode.

Materials Chemical Point of View for Durability Issues in Solid Oxide Fuel Cells

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.26-38
    • /
    • 2010
  • Degradation in Solid Oxide Fuel Cell performance can be ascribed to the following fundamental processes from the materials chemical point of view; that is, diffusion in solids and reaction with gaseous impurities. For SOFC materials, diffusion in solids is usually slow in operation temperatures $800\sim1000^{\circ}C$. Even at $800^{\circ}C$, however, a few processes are rapid enough to lead to some degradations; namely, Sr diffusion in doped ceria, cation diffusion in cathode materials, diffusion related with metal corrosion, and sintering of nickel anodes. For gaseous impurities, chromium containing vapors are important to know how the chemical stability of cathode materials is related with degradation of performance. For LSM as the most stable cathode among the perovskite-type cathodes, electrochemical reduction reaction of $CrO_3$(g) at the electrochemically active sites is crucial, whereas the rest of the cathodes have the $SrCrO_4$ formation at the point where cathodes meet with the gases, leading to rather complicated processes to the degradations, depending on the amount and distribution of reacted Cr component. These features can be easily generalized to other impurities in air or to the reaction of nickel anodes with gaseous impurities in anode atmosphere.

스크린 프린팅 기반 저가형의 플렉서블 칼륨 이온 센서 제조 및 이의 전기화학적 특성 (Fabrication of Low-cost and Flexible Potassium Ion Sensors based on Screen Printing and Their Electrochemical Characteristics)

  • 손선규;박홍준;김영균;조현상;최봉길
    • 공업화학
    • /
    • 제30권6호
    • /
    • pp.737-741
    • /
    • 2019
  • 본 연구에서는 스크린 프린팅 공정을 이용하여 저렴하고 유연한 칼륨 이온(K+) 센서를 제작하였다. 전도성 잉크의 균일한 코팅은 주사 전자 현미경 및 광학 현미경 측정에 의해 입증되었다. K+ 센서는 높은 감도, 빠른 응답 시간, 낮은 검출 한계를 보여주었다. 제조된 K+ 센서의 감도는 기계적으로 구부러진 상태에도 여전히 유지되었다. 히스테리시스 효과가 없는 우수한 반복성과 우수한 장기 안정성이 K+ 센서의 전기화학적 특성 분석에서 관찰되었다. 또한, K+ 센서는 다른 간섭 양이온이 존재하는 경우에도 정확하게 K+ 농도를 측정 할 수 있어 우수한 선택성을 증명하였다. 또한, 실제 스포츠 음료 샘플에서 K+ 농도의 성공적인 측정은 K+ 센서의 K+ 농도 값과 상용 K+ 미터를 비교하여 증명되었다.

고분자막 pH 센서 제작 및 특성 (Preparation and characterization of polymeric membrane pH Sensors)

  • 조동회;정성숙;정구춘;이경호;박면용;김병수
    • 센서학회지
    • /
    • 제5권4호
    • /
    • pp.35-40
    • /
    • 1996
  • 수소이온운반체로 HDBA(hexyldibenzylamine)나 HDPA(hexyldiphenylamine)을 이용하여 고분자막 pH 센서를 제작하였고, 온도 및 막의 두께 변화에 대한 전기화학적 특성을 연구하였다. HDPA를 이용한 센서는 수소이온에 대하여 선택적으로 감응하지 않았으며, HDBA를 이용한 센서는 pH 2 - pH 10 범위에서 수소이온에 대하여 선형적이고, 응답시간도 30 - 50초로 매우 빠르며, Nernstian 기울기는 53.6mV/pH을 나타내었다. pH 센서는 유리전극과 비교하여 알칼리금속과 알칼리토 금속이온에 대하여 방해를 적게 받았고, 재현성 및 안정성에 대한 편차는 2 - 4mV(${\pm}0.1mV$)로 우수하게 나타내었다.

  • PDF

도핑효과에 따른 리튬이차전지용 NCA 양극활물질의 전기화학적 특성 향상 (Enhanced Electrochemical Properties of NCA Cathode Materials for Lithium Ion Battery by Doping Effect)

  • 범지우;김은미;정상문
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.861-867
    • /
    • 2017
  • 니켈 함량이 높은 리튬이차전지용 NCA 양극소재의 용량 및 수명특성을 향상시키기 위하여 붕소와 코발트를 상업용 $Li_{1.06}Ni_{0.91}Co_{0.08}Al_{0.01}O_2$ (NCA)에 도핑하여 리튬이차전지의 양극소재로 사용하였다. 상업용 NCA 양극소재는 약 $5{\mu}m$$12{\mu}m$ 크기의 2차 입자들이 혼합되어 있고 붕소와 코발트 도핑후 입자크기는 조금 감소되었다. 붕소와 코발트를 도핑한 NCA-B와 NCA-Co의 초기 방전용량은 각각 214 mAh/g과 200 mAh/g으로 도핑하지 않은 NCA에 비해 높게 나타났으며, 특히 NCA-Co는 20번째의 방전용량이 157 mAh/g으로 가장 우수한 방전용량특성을 나타내었다. 이는 코발트를 도핑함으로써 c축 방향으로의 결정이 성장되어 리튬이온의 확산이 용이하기 때문이다.

$LiMn_{2-y}M_{y}O_{4}$ 정극 활물질의 전기화학적 특성. III. $LiMn_{2-y}M_{y}O_{4}$의 충방전 특성과 AC 임피던스의 온도 의존성 (The Electrochemical Characterization of $LiMn_{2-y}M_{y}O_{4}$ Cathode Material. III. The Effect of Temperature on the Charge-discharge Property and AC Impedance of $LiMn_{2-y}M_{y}O_{4}$)

  • 정인성;구할본;김종욱;손명모;이헌수
    • 한국전기전자재료학회논문지
    • /
    • 제14권8호
    • /
    • pp.663-669
    • /
    • 2001
  • Spinel LiM $n_2$ $O_4$ and LiM $n_{1.9}$M $g_{0.1}$ $O_4$ power was synthesized with solid-state method by calcining the mixture of LiOH.$H_2O$, Mn $O_2$ and MgO at 80$0^{\circ}C$ for 36 h in an air atmosphere. To investigate the effect of temperature on he cycle performance of cathode material during cycling, charge-discharge experiments and ac impedance measurement were performed. Initial discharge capacity was gradually increased with the increase of charge-discharge temperature. Discharge capacity at high temperature was suddenly decreased during cycling. On the other hand, discharge capacity at low temperature was almost constant during cycling. It confirmed that Mn dissolution is serious at high temperature than at low temperature. LiM $n_2$ $O_4$ and LiM $n_{1.9}$M $g_{0.1}$ $O_4$ showed the best capacity and stability at room temperature.ure.ure.

  • PDF

Improved Mesoporous Structure of High Surface Area Carbon Nanofiber for Electrical Double-Layer Capacitors

  • Lee, Young-Geun.;An, Geon-Hyoung;Ahn, Hyo-Jin
    • 한국재료학회지
    • /
    • 제27권4호
    • /
    • pp.192-198
    • /
    • 2017
  • Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of $703m^2g^{-1}$, total pore volume of $0.51cm^3g^{-1}$, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of $143F\;g^{-1}$, high-rate performance, high energy density of $17.9-13.0W\;h\;kg^{-1}$, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.

산소발생반응을 위한 CuCo2O4 나노섬유 전기화학 촉매 합성 및 특성 분석 (Synthesis and Characterization of CuCo2O4 Nanofiber Electrocatalyst for Oxygen Evolution Reaction)

  • 원미소;장명제;이규환;김양도;최승목
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.539-548
    • /
    • 2016
  • The non-noble 1D nanofibers(NFs) prepared by electrospinning and calcination method were used as oxygen evolution reaction (OER) electrocatalyst for water electrolysis. The electrospinning process and rate of solution composition was optimized to prepare uniform and non-beaded PVP polymer electrospun NFs. The diameter and morphology of PVP NFs changed in accordance with the viscosity and ion conductivity. The clean metal precursor contained electrospun fibers were synthesized via the optimized electrospinning process and solution composition. The calcined $CuCo_2O_4$ NFs catalyst showed higher activity and long-term cycle stability for OER compared with other $Co_3O_4$, $NiCo_2O$ NF catalysts. Furthermore, the $CuCo_2O_4$ NFs maintained the OER activity during long-term cycle test compared with commercial $CuCo_2O_4$ nanoparticle catalyst due to unique physicochemical and electrochemical properties by1D nanostructure.

Thermal Behavior of LixCoO2 Cathode and Disruption of Solid Electrolyte Interphase Film

  • Doh, Chil-Hoon;Kim, Dong-Hun;Lee, Jung-Hun;Lee, Duck-Jun;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Gi;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.783-786
    • /
    • 2009
  • Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and ion chromatography(IC) were employed to analyze the thermal behavior of $Li_xCoO_2$ cathode material of lithium ion battery. The mass loss peaks appearing between 60 and 125 ${^{\circ}C}$ in TGA and the exothermic peaks with 4.9 and 7.0 J/g in DSC around 75 and 85 ${^{\circ}C}$ for the $Li_xCoO_2$ cathodes of 4.20 and 4.35 V cells are explained based on disruption of solid electrolyte interphase (SEI) film. Low temperature induced HF formation through weak interaction between organic electrolyte and LiF is supposed to cause carbonate film disruption reaction, $Li_2CO_3\;+\;2HF{\rightarrow}\;2LiF\;+\;CO_2\;+\;H_2O$. The different spectral DSC/TGA pattern for the cathode of 4.5 V cell has also been explained. Presence of ionic carbonate in the cathode has been identified by ion chromatography and LiF reported by early researchers has been used for explaining the film SEI disruption process. The absence of mass loss peak for the cathode washed with dimethyl carbonate (DMC) implies ionic nature of the film. The thermal behavior above 150 ${^{\circ}C}$ has also been analyzed and presented.

Synthesis of New Spiro[benzo[c]fluorene-7,9'-fluorene] Dimers and Their Optical Properties

  • Seo, Jeong-A;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1414-1420
    • /
    • 2013
  • Five novel spiro[benzo[c]fluorene-7,9'-fluorene] based dyes, including 5-[spiro[benzo[c]fluorene-7,9'-fluoren]-5-yl] spiro[benzo[c]fluorene-7,9'-fluorene] (7), 5-[spiro[benzo[c]fluorene-7,9'-fluoren]-9-yl] spiro[benzo[c]fluorene-7,9'-fluorene] (8), 5-[spiro[benzo[c]fluorene-7,9'-fluoren]-2'-yl] spiro[benzo[c]fluorene-7,9'-fluorene] (9), 9-[spiro[benzo[c]fluorene-7,9'-fluoren]-9-yl] spiro[benzo[c]fluorene-7,9'-fluorene] (10), and 2'-[spiro[benzo[c]-fluorene-7,9'-fluoren]-2'-yl] spiro[benzo[c]fluorene-7,9'-fluorene] (11) were successfully prepared from the corresponding halogen and boronic acid derivatives through the Suzuki coupling reaction, respectively. Chemical structures were confirmed by $^1H$ nuclear magnetic resonance (NMR), $^{13}C$ NMR, Fourier transforminfrared spectrscopy, mass spectroscopy, and elemental analysis. The thermal properties were determined by differential scanning calorimetry and thermal gravimetric analysis. The relationships between the optical and electrochemical properties and the combined positions between these dimers were systematically investigated using UV-vis, photoluminescence (PL), and photoelectron spectroscopy. These five dimers exhibited high fluorescent quantum yields and good morphological stability with high glass transition states > $174^{\circ}C$. Dimer 7 showed a UV absorbance peak at 353 nm, emission PL peak at 424 nm, and quantum efficiency of 0.62 in a cyclohexane solution.