Browse > Article
http://dx.doi.org/10.9713/kcer.2017.55.6.861

Enhanced Electrochemical Properties of NCA Cathode Materials for Lithium Ion Battery by Doping Effect  

Fan, Zhi Yu (Department of Chemical Engineering, Chungbuk National University)
Jin, n Mei (Department of Chemical Engineering, Chungbuk National University)
Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University)
Publication Information
Korean Chemical Engineering Research / v.55, no.6, 2017 , pp. 861-867 More about this Journal
Abstract
In order to improve the capacity and cycling stability of Ni-rich NCA cathode materials for lithium ion batteries, the boron and cobalt were doped in commercial $Li_{1.06}Ni_{0.91}Co_{0.08}Al_{0.01}O_2$ (NCA) powders. Commercial NCA particles are mixed composites such as secondary particles of about $5{\mu}m$ and $12{\mu}m$, and the particle size was decreased by doping boron and cobalt. The initial discharge capacities of the boron and cobalt doped NCA-B and NCA-Co were found to be 214 mAh/g and 200 mAh/g, respectively, which are higher values than that of the raw NCA cathode material. In particular, NCA-Co exhibits the best discharge capacity of 157 mAh/g after 20 cycles, which is probably due to the enhanced diffusion of lithium ion by crystal growth along with the c-axis direction.
Keywords
Lithium ion battery; NCA; Doping; Boron; Cobalt;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lai, Y. Q., Xu, M., Zhang, Z. A., Gao, C. H., Wang, P. and Yu, Z. Y., "Optimized Structure Stability and Electrochemical Performance of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}$ by Sputtering Nanoscale ZnO Film," J. Power Sources, 309, 20-26(2016).   DOI
2 Liu, J., Wang, S., Ding, Z., Zhou, R., Xia, Q., Zhang, J., Chen, L., Wei, W. and Wang, P., "The Effect of Boron Doping on Structure and Electrochemical Performance of Lithium-Rich Layered Oxide Materials," ACS Appl. Mater. Interfaces, 8(28), 18008-18017(2016).   DOI
3 Li, B., Yan, H., Ma, J., Yu, P., Xia, D., Huang, W., Chu, W. and Wu, Z., "Manipulating the Electronic Structure of Li-Rich Manganese-Based Oxide Using Polyanions: Towards Better Electrochemical Performance," Adv. Funct. Mater., 24(32), 5112-5118 (2014).   DOI
4 Xie, H., Hu, G., Du, K., Peng, Z. and Cao, Y., "An Improved Continuous Co-Precipitation Method to Synthesize $LiNi_{0.80}Co_{0.15}Al_{0.05}O_{2}$ Cathode Material," J. Power Sources, 666, 84-87(2016).
5 Hu, G., Liu, W., Peng, Z., Du, K. and Cao, Y., "Synthesis and Electrochemical Peoperties of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}$ Prepared from the Precursor $Ni_{0.8}Co_{0.15}Al_{0.05}OOH$," J. Power Sources, 198, 258-263(2012).   DOI
6 Dahn, J. R., Sacken, U. V. and Michal, C. A., "Structure and Electrochemistry of $Li_{1{\pm}y}NiO_{2}$ and a New $Li_{2}NiO_{2}$ Phase with the $Ni(OH)_{2}$ Structure," Solid State Ionics 44(1), 87-97(1990).   DOI
7 Reimers, J. N., Rossen, E., Jones, C. D. and Dahn, J. R., "Structure and Electrochemistry of $Li_{x}FeyNi_{1-y}O_{2}$," Solid State Ionics, 61(4), 335-344(1993).   DOI
8 Park, T. J., Lim, J. B. and Son, J. T., "Effect of Calcination Temperature of Size Controlled Microstructure of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}$ Cathode for Rechargeable Lithium Battery," Bull. Korean Chem. Soc., 35(2), 357-364(2014).   DOI
9 Wu, K., Wang, F., Gao, L., Li, M. R., Xiao, L., Zhao, L., Hu, S., Wang, X., Xu, Z. and Wu, Q., "Effect of Precursor and Synthesis Temperature on the Structural and Electrochemical Properties of $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_{2}$," Electrochim. Acta, 75(4), 393-398(2012).   DOI
10 Ju, J. H. and Rye, K. S., "Synthesis and Electrochemical Performance of $Li(Ni_{0.8}Co_{0.15}Al_{0.05})_{0.8}(Ni_{0.5}Mn_{0.5})_{0.2}O_{2}$ with Core-shell Structure as Cathode Material for Li-ion Batteries," J. Alloys Compd., 509(30), 7985-7992(2011).   DOI
11 Jin, E. M., Lee, G. E., Na, B. K. and Jeong, S. M., "Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity of Lithium Ion Battery," Korean Chem. Eng. Res., 55(2), 163-169 (2017).   DOI
12 Liu, W., Hu, G., Du, K., Peng, Z. and Cao, Y., "Surface Coating of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}$ with $LiCoO_{2}$ by a Molten Salt Method,"Surf. Coat. Technol., 216, 267-272(2013).   DOI
13 Park, H. Y., Yeom, D. H., Kim, J. Y. and Lee, J. K., "MnO/C Nanocomposite Prepared by One-pot Hydrothermal Reaction for High Performance Lithium-ion Battery Anodes," Korean J. Chem. Eng., 32(1), 178-183(2015).   DOI
14 Vu, D. L. and Lee, J. W., "Properties of $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_{2}$ as a High Energy Cathode Material for Lithium-ion Batteries," Korean J. Chem. Eng., 33(2), 514-526(2016).   DOI
15 Kannan, A. M. and Manthiram, A., "Structural Stability of $Li_{1-x}Ni_{0.85}Co_{0.15}O_{2}$ and $Li_{1-x}Ni_{0.85}Co_{0.12}Al_{0.03}O_{2}$ Cathodes at Elevated Temperatures," J. Electrochem. Soc., 150(3), A349-A353(2003).   DOI
16 Omanda, H., Brousse, T., Marhic, C. and Schleich, D. M., "Improvement of the Thermal Stability of $LiNi_{0.8}Co_{0.2}O_{2}$ Cathode by a $SiO_{x}$ Protective Coating," J. Electrochem. Soc., 151(6), A922-A929(2004).   DOI
17 Delmas, C. and Croguennec, L., "Layered $Li(Ni, M)O_{2}$ Systems as the Cathode Material in Lithium-Ion Batteries," Mater. Res. Soc. Bull., 27(8), 608-612(2002).   DOI
18 Majumder, S. B., Nieto, S. and Katiyar, R. S., "Synthesis and Electrochemical Properties of $LiNi_{0.80}(Co_{0.20-x}Al_{x})O_{2}$ (x=0.0 and 0.05) Cathodes for Li Ion Rechargeable Batteries," J. Power Source, 154(1), 262-267(2006).   DOI
19 Xie, H., Du, K., Hu, G., Peng, Z. and Cao, Y., "The Role of Sodium in $LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}$ Cathode Material and Its Electrochemical Behaviors," J. Phys. Chem. C, 120(6), 3235-3241(2016).   DOI
20 Kondo, H., Takeuchi, Y., Sasaki, T., Kawauchi, S., Itou, Y., Hiruta, O., Okuda, C., Yonemura, M., Kamiyama, T. and Ukyo, Y., "Effects of Mg-substitution in $Li(Ni,Co,Al)O_{2}$ Positive Electrode Materials on the Crystal Structure and Battery Performance," J. Power Source, 174(2), 1131-1136(2007).   DOI