DOI QR코드

DOI QR Code

Synthesis and Characterization of CuCo2O4 Nanofiber Electrocatalyst for Oxygen Evolution Reaction

산소발생반응을 위한 CuCo2O4 나노섬유 전기화학 촉매 합성 및 특성 분석

  • Won, Mi So (Surface Technology Division, Korea Institute of Materials Science (KIMS)) ;
  • Jang, Myeong-Je (Surface Technology Division, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Kyu Hwan (Surface Technology Division, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Yang Do (Department of Materials Science and Engineering, Pusan National University) ;
  • Choi, Sung Mook (Surface Technology Division, Korea Institute of Materials Science (KIMS))
  • 원미소 (한국기계연구원부설 재료연구소 표면기술연구본부) ;
  • 장명제 (한국기계연구원부설 재료연구소 표면기술연구본부) ;
  • 이규환 (한국기계연구원부설 재료연구소 표면기술연구본부) ;
  • 김양도 (부산대학교 재료공학과) ;
  • 최승목 (한국기계연구원부설 재료연구소 표면기술연구본부)
  • Received : 2016.11.08
  • Accepted : 2016.12.07
  • Published : 2016.12.31

Abstract

The non-noble 1D nanofibers(NFs) prepared by electrospinning and calcination method were used as oxygen evolution reaction (OER) electrocatalyst for water electrolysis. The electrospinning process and rate of solution composition was optimized to prepare uniform and non-beaded PVP polymer electrospun NFs. The diameter and morphology of PVP NFs changed in accordance with the viscosity and ion conductivity. The clean metal precursor contained electrospun fibers were synthesized via the optimized electrospinning process and solution composition. The calcined $CuCo_2O_4$ NFs catalyst showed higher activity and long-term cycle stability for OER compared with other $Co_3O_4$, $NiCo_2O$ NF catalysts. Furthermore, the $CuCo_2O_4$ NFs maintained the OER activity during long-term cycle test compared with commercial $CuCo_2O_4$ nanoparticle catalyst due to unique physicochemical and electrochemical properties by1D nanostructure.

Keywords

References

  1. E.A. Parson and D.W. Keith, Fossil fuels without $CO_2$ emissions, Science, 282 (1998) 1053-1054. https://doi.org/10.1126/science.282.5391.1053
  2. S. Perathoner and G. Centi, $CO_2$ recycling: A key strategy to introduce green energy in the chemical production chain, ChemSusChem, 7 (2014) 1274-1282. https://doi.org/10.1002/cssc.201300926
  3. M.K. Datta, K. Kadakia, O.I. Velikokhatnyi, P.H. Jampani, S.J. Chung, J.A. Poston, A. Manivannan and P.N. Kumta, High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis, Journal of Materials Chemistry A, 1 (2013) 4026-4037. https://doi.org/10.1039/c3ta01458d
  4. M. Curry-Nkansah, D. Driscoll, R. Farmer, R. Garland, J. Gruber and N. Gupta, Hydrogen production roadmap, technology pathways to the future, Freedom CAR & fuel partnership hydrogen production technical team, (2009).
  5. C.-J. Winter, Hydrogen energyy-abundant, efficient, clean: a debate over the energy-system-of-change, International Journal of Hydrogen Energy, 34 (2009) S1-S52. https://doi.org/10.1016/j.ijhydene.2009.05.063
  6. M.W. Kanan and D.G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and $Co^{2+}$, Science, 321 (2008) 1072-1075. https://doi.org/10.1126/science.1162018
  7. L. Chen, X. Dong, Y. Wang and Y. Xia, Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide, Nature communications, 7 (2016).
  8. M. Wang, Z. Wang, X. Gong and Z. Guo, The intensification technologies to water electrolysis for hydrogen production-A review, Renewable and Sustainable Energy Reviews, 29 (2014) 573-588. https://doi.org/10.1016/j.rser.2013.08.090
  9. S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari and Y. Kiros, Advanced alkaline water electrolysis, Electrochimica Acta, 82 (2012) 384-391. https://doi.org/10.1016/j.electacta.2012.05.011
  10. K. Zeng and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Progress in Energy and Combustion Science, 36 (2010) 307-326. https://doi.org/10.1016/j.pecs.2009.11.002
  11. F. Barbir, PEM electrolysis for production of hydrogen from renewable energy sources, Solar energy, 78 (2005) 661-669. https://doi.org/10.1016/j.solener.2004.09.003
  12. P. Millet, N. Mbemba, S. Grigoriev, V. Fateev, A. Aukauloo and C. Etievant, Electrochemical performances of PEM water electrolysis cells and perspectives, International Journal of Hydrogen Energy, 36 (2011) 4134-4142. https://doi.org/10.1016/j.ijhydene.2010.06.105
  13. K. Ayers and C. Capuano, Economical production of hydrogen through development of novel, high efficiency electrocatalysts for alkaline membrane electrolysis, DOE Hydrogen and Fuel Cell Program Review, (2013).
  14. C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi and M. Comotti, Highly Efficient Platinum Group Metal Free Based Membrane-Electrode Assembly for Anion Exchange Membrane Water Electrolysis, Angewandte Chemie, 126 (2014) 1402-1405. https://doi.org/10.1002/ange.201308099
  15. M. Unlu, J. Zhou and P.A. Kohl, Hybrid anion and proton exchange membrane fuel cells, The Journal of Physical Chemistry C, 113 (2009) 11416-11423.
  16. Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner and C.-Y. Wang, Solid-state water electrolysis with an alkaline membrane, Journal of the American Chemical Society, 134 (2012) 9054-9057. https://doi.org/10.1021/ja302439z
  17. J.R. Varcoe and R.C. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells, Fuel cells, 5 (2005) 187-200. https://doi.org/10.1002/fuce.200400045
  18. M. Carmo, D.L. Fritz, J. Mergel and D. Stolten, A comprehensive review on PEM water electrolysis, International journal of hydrogen energy, 38 (2013) 4901-4934. https://doi.org/10.1016/j.ijhydene.2013.01.151
  19. X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen and S. Yang, A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction, Angewandte Chemie, 126 (2014) 7714-7718. https://doi.org/10.1002/ange.201402822
  20. J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough and Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles, Science, 334 (2011) 1383-1385. https://doi.org/10.1126/science.1212858
  21. E. Fabbri, A. Habereder, K. Waltar, R. Kotz and T. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction, Catalysis Science & Technology, 4 (2014) 3800-3821. https://doi.org/10.1039/C4CY00669K
  22. J. Wu, Y. Xue, X. Yan, W. Yan, Q. Cheng and Y. Xie, $Co_3O_4$ nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst, Nano Research, 5 (2012) 521-530. https://doi.org/10.1007/s12274-012-0237-y
  23. X. Liu, H. Jia, Z. Sun, H. Chen, P. Xu and P. Du, Nanostructured copper oxide electrodeposited from copper (II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction, Electrochemistry Communications, 46 (2014) 1-4. https://doi.org/10.1016/j.elecom.2014.05.029
  24. R. Singh, J. Pandey, N. Singh, B. Lal, P. Chartier and J.-F. Koenig, Sol-gel derived spinel $M_xCo_{3-x}O_4$ (M= Ni, Cu; 0$<\preceq$ x$<\preceq$ 1) films and oxygen evolution, Electrochimica Acta, 45 (2000) 1911-1919. https://doi.org/10.1016/S0013-4686(99)00413-2
  25. X. Wu and K. Scott, $Cu_xCo_{3-x}O_4$ (0$<\preceq$ x$\prec$ 1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers, Journal of Materials Chemistry, 21 (2011) 12344-12351. https://doi.org/10.1039/c1jm11312g
  26. G. Che, B. Lakshmi, C. Martin, E. Fisher and R.S. Ruoff, Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method, Chemistry of Materials, 10 (1998) 260-267. https://doi.org/10.1021/cm970412f
  27. J. Huang, S. Virji, B.H. Weiller and R.B. Kaner, Polyaniline nanofibers: facile synthesis and chemical sensors, Journal of the American Chemical Society, 125 (2003) 314-315. https://doi.org/10.1021/ja028371y
  28. J.D. Hartgerink, E. Beniash and S.I. Stupp, Self-assembly and mineralization of peptide-amphiphile nanofibers, Science, 294 (2001) 1684-1688. https://doi.org/10.1126/science.1063187
  29. N. Bhardwaj and S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnology advances, 28 (2010) 325-347. https://doi.org/10.1016/j.biotechadv.2010.01.004
  30. M.T. Hunley and T.E. Long, Electrospinning functional nanoscale fibers: a perspective for the future, Polymer International, 57 (2008) 385-389. https://doi.org/10.1002/pi.2320
  31. J. Lannutti, D. Reneker, T. Ma, D. Tomasko and D. Farson, Electrospinning for tissue engineering scaffolds, Materials Science and Engineering: C, 27 (2007) 504-509. https://doi.org/10.1016/j.msec.2006.05.019
  32. Y. Ahn, S. Park, G. Kim, Y. Hwang, C. Lee, H. Shin and J. Lee, Development of high efficiency nanofilters made of nanofibers, Current Applied Physics, 6 (2006) 1030-1035. https://doi.org/10.1016/j.cap.2005.07.013
  33. W.E. Teo and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology, 17 (2006) R89. https://doi.org/10.1088/0957-4484/17/14/R01
  34. E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee and M.L. Brongersma, Self-limited plasmonic welding of silver nanowire junctions, Nature materials, 11 (2012) 241-249. https://doi.org/10.1038/nmat3238
  35. E. Zussman, A. Theron and A. Yarin, Formation of nanofiber crossbars in electrospinning, Applied Physics Letters, 82 (2003) 973-975. https://doi.org/10.1063/1.1544060
  36. S. Haider, A. Haider, A. Ahmad, S.U.-D. Khan, W.A. Almasry and M. Sarfarz, ELECTROSPUN NANOFIBERS AFFINITY MEMBRANES FOR WATER HAZARDS REMEDIATION, Nanotechnology Research Journal, 8 (2015) 511.
  37. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites science and technology, 63 (2003) 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  38. S. Ahir, Y. Huang and E. Terentjev, Polymers with aligned carbon nanotubes: Active composite materials, Polymer, 49 (2008) 3841-3854. https://doi.org/10.1016/j.polymer.2008.05.005
  39. D.H. Reneker and A.L. Yarin, Electrospinning jets and polymer nanofibers, Polymer, 49 (2008) 2387-2425. https://doi.org/10.1016/j.polymer.2008.02.002
  40. D.H. Reneker, A.L. Yarin, H. Fong and S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, Journal of Applied physics, 87 (2000) 4531-4547. https://doi.org/10.1063/1.373532
  41. D. Li and Y. Xia, Electrospinning of nanofibers: reinventing the wheel?, Advanced materials, 16 (2004) 1151-1170. https://doi.org/10.1002/adma.200400719
  42. A. Greiner and J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angewandte Chemie International Edition, 46 (2007) 5670-5703. https://doi.org/10.1002/anie.200604646
  43. S.L. Shenoy, W.D. Bates, H.L. Frisch and G.E. Wnek, Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymerr-polymer interaction limit, Polymer, 46 (2005) 3372-3384. https://doi.org/10.1016/j.polymer.2005.03.011
  44. P. Gupta, C. Elkins, T.E. Long and G.L. Wilkes, Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent, Polymer, 46 (2005) 4799-4810. https://doi.org/10.1016/j.polymer.2005.04.021
  45. L. Li, Z. Jiang, J. Xu and T. Fang, Predicting poly (vinyl pyrrolidone)'s solubility parameter and systematic investigation of the parameters of electrospinning with response surface methodology, Journal of Applied Polymer Science, 131 (2014).
  46. S. Megelski, J.S. Stephens, D.B. Chase and J.F. Rabolt, Micro-and nanostructured surface morphology on electrospun polymer fibers, Macromolecules, 35 (2002) 8456-8466. https://doi.org/10.1021/ma020444a
  47. J.M. Deitzel, J. Kleinmeyer, D. Harris and N.B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 42 (2001) 261-272. https://doi.org/10.1016/S0032-3861(00)00250-0
  48. A. Paudel, J. Van Humbeeck and G. Van den Mooter, Theoretical and experimental investigation on the solid solubility and miscibility of naproxen in poly (vinylpyrrolidone), Molecular pharmaceutics, 7 (2010) 1133-1148. https://doi.org/10.1021/mp100013p
  49. S. Chattopadhyay, S. Chakraborty, D. Laha, R. Baral, P. Pramanik and S. Roy, Surface-modified cobalt oxide nanoparticles: new opportunities for anti-cancer drug development, Cancer nanotechnology, 3 (2012) 13-23. https://doi.org/10.1007/s12645-012-0026-z
  50. B. Kaur, B. Satpati and R. Srivastava, Synthesis of $NiCo_2O_4$/Nano-ZSM-5 nanocomposite material with enhanced electrochemical properties for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan, New Journal of Chemistry, 39 (2015) 1115-1124. https://doi.org/10.1039/C4NJ01360C
  51. H. Yan, D. Zhang, J. Xu, Y. Lu, Y. Liu, K. Qiu, Y. Zhang and Y. Luo, Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors, Nanoscale research letters, 9 (2014) 1-7. https://doi.org/10.1186/1556-276X-9-1
  52. W. Yao, F.-L. Li, H.-X. Li and J.-P. Lang, Fabrication of hollow Cu2O@ CuO-supported Au-Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction, Journal of Materials Chemistry A, 3 (2015) 4578-4585. https://doi.org/10.1039/C4TA06378C
  53. A. Patterson, The Scherrer formula for X-ray particle size determination, Physical review, 56 (1939) 978. https://doi.org/10.1103/PhysRev.56.978
  54. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, $Co_3O_4$ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nature materials, 10 (2011) 780-786. https://doi.org/10.1038/nmat3087
  55. J.-M. Hu, J.-Q. Zhang and C.-N. Cao, Oxygen evolution reaction on $IrO_2$-based DSA(R) type electrodes: kinetics analysis of Tafel lines and EIS, International Journal of Hydrogen Energy, 29 (2004) 791-797. https://doi.org/10.1016/j.ijhydene.2003.09.007
  56. S. Fierro, A. Kapalka and C. Comninellis, Electrochemical comparison between $IrO_2$ prepared by thermal treatment of iridium metal and $IrO_2$ prepared by thermal decomposition of $H_2IrCl_6$ solution, Electrochemistry communications, 12 (2010) 172-174. https://doi.org/10.1016/j.elecom.2009.11.018
  57. R.D. Smith, M.S. Prévot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K.J. Siu, S. Trudel and C.P. Berlinguette, Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis, Science, 340 (2013) 60-63. https://doi.org/10.1126/science.1233638