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1. Introduction1)

A potentiometric ion sensor consists of ion-selective electrode and 

reference electrode. They can accurately detect ion concentration in a 

solution sample has various potential applications in the growing field 

of clinical diagnosis, environmental, biological and chemical analysis, 

and healthcare[1-5]. Particularly, the continuous increase in concerning 

human health and safety, food and soil quality, and chemical and envi-

ronmental protection requires the need for the development of low 
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cost, miniaturized, simple, and past ion sensors suitable for point of 

testing[4,5]. To date, high performance of potentiometric ion sensors 

has reported using ion-selective membrane-coated glassy carbon or gold 

rod electrodes[6-9]. In addition, some of the reports use glass-based 

silver/silver chloride (Ag/AgCl) reference electrode[8,9]. Although the 

sensitivity and stability of such ion sensors are accurate to approx-

imately a millivolt, the design and configuration of ion sensors limit 

in applications that require robustness, flexibility, and limited space of 

sample[4,10-12].

Printing processes, including inkjet, screen, and roll-to-roll gravure, 

and flexographic printing, are widely used to transfer ink pigments on-

to the patterned surfaces of rigid, flexible and conformable substrates. 

These processes can be a promising candidate for high-throughput, 

simple, and inexpensive fabrication of flexible electronics, sensors, and 
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초    록

본 연구에서는 스크린 프린팅 공정을 이용하여 저렴하고 유연한 칼륨 이온(K+) 센서를 제작하였다. 전도성 잉크의 균일
한 코팅은 주사 전자 현미경 및 광학 현미경 측정에 의해 입증되었다. K+ 센서는 높은 감도, 빠른 응답 시간, 낮은 검출 
한계를 보여주었다. 제조된 K+ 센서의 감도는 기계적으로 구부러진 상태에도 여전히 유지되었다. 히스테리시스 효과
가 없는 우수한 반복성과 우수한 장기 안정성이 K+ 센서의 전기화학적 특성 분석에서 관찰되었다. 또한, K+ 센서는 
다른 간섭 양이온이 존재하는 경우에도 정확하게 K+ 농도를 측정 할 수 있어 우수한 선택성을 증명하였다. 또한, 실제 
스포츠 음료 샘플에서 K+ 농도의 성공적인 측정은 K+ 센서의 K+ 농도 값과 상용 K+ 미터를 비교하여 증명되었다.

Abstract
A low-cost and flexible potassium ion (K+) sensor was fabricated through a screen-printed process. Uniform and conformal 
coating of conductive inks was verified by scanning electron microscopy and optical microscopy measurements. The 
K+-sensors showed a high sensitivity, fast response time, and low detection limit. The sensitivity of K+-sensor was similar 
to that of both mechanically normal and bent states. The K+-sensor exhibited a good reproducibility with no hysteresis effect 
and excellent long term stability. In addition, the K+-sensor showed an excellent selectivity for K+ concentrations in the pres-
ence of other interfering cation ions. Successful measurements of K+ concentrations in sports drink samples were demonstrated 
by comparing K+ concentration values from K+-sensor to those of using a commercial K+-meter.
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energy storage devices[13-21]. As one of printing techniques, a screen 

printing is a mass-printing method realized by pressing an ink through 

a patterned stencil with a squeegee[17-21]. It has been widely em-

ployed for electronics and is compatible with a wide variety of func-

tional inks and substrates[15-21]. Screen printing is a stencil process 

whereby ink is transferred on to the substrate through a stencil screen 

made of a fine, porous mesh of fabric, silk, synthetic fibres or metal 

threads. In addition, this process is simple, low-cost and scalable with 

various preparation conditions[18-21]. Although the screen printing 

technique is used for manufacturing of the conductive patterns and 

electrodes, its application to fabrication of flexible potentiometric ion 

sensors with a high reproducibility has been rarely reported.

Here, we report a low-cost, miniaturized, and flexible potassium ion 

(K+) sensor based on screen printing process. The sensor electrodes 

were prepared by screen-printed carbon and Ag inks, resulting in 

two-electrode configuration for K+-sensors. The electrochemical per-

formance of K+-sensors was evaluated by potentiometric technique. 

The screen-printed K+-sensors exhibited an ideal Nernstian behavior in 

a wide linear range with a fast response time and low detection limit. 

Under the mechanically bent state, the K+-sensor could measure accu-

rately changes of K+ concentration. In addition, the K+-sensors showed 

a good repeatability and long-term stability. This low-cost and high-per- 

formance K+-sensor provided accurate measurement of K+ concen-

tration of real sample (sports drink), and the values are comparable to 

those of commercial K+-meter equipped with glass-based electrodes.

2. Experimental

2.1. Materials

Valinomycin (potassium ionophore I), potassium tetrakis(4-chlor-

ophenyl)borate (KTClPB), bis(2-ethylhexyl)sebacate (DOS), polyvinyl 

chloride (PVC), BUTVAR® B-98 (polyvinyl butyral, PVB), tetrahy-

drofuran (THF), potassium chloride, calcium chloride, sodium chloride, 

magnesium chloride and ammonium chloride were purchased from 

Sigma-Aldrich (USA). An Ag paste (LS-405-5) and carbon paste 

(FTU-16) were obtained from Asahi Chemical Research Laboratory 

(Japan). An Ag/AgCl ink was purchased from Ercon (USA). Deionized 

water (18.2 MΩ-cm resistivity) was used in all experiments.

2.2. Preparation of screen-printed electrodes

The screen-printed electrodes of K+-sensor consisting of carbon and 

Ag inks were fabricated using a screen-printing system (Linesystem, 

LISD-60UV) and a custom stainless-steel mask developed using Auto- 

CAD software. The carbon and Ag inks were screen-printed on the 

flexible polyethylene terephthalate (PET) substrate. The screen-printed 

electrodes, which are comprised of working electrode patterned using 

a carbon paste and reference electrode patterned from Ag paste, were 

cured at 85 ℃ for 30 min in a convection oven after screen print. To 

fabricate reference electrode, additionally screen printing Ag/AgCl 

paste on the Ag ink was conducted and left to dry at 85 ℃ for 30 

min in a convection oven.

2.3. Fabrication of K+-sensor

A K+-selective membrane cocktail was prepared by mixing a valino-

mycin (2 %w/w), KTClPB (0.5 %w/w), DOS (64.7 %w/w), and PVC 

(32.8 %w/w) in 1 mL of THF. The K+ electrode was fabricated by 

drop-casting K+-selective membrane cocktail of 4 µL onto the surface 

of carbon electrode and left to dry overnight at room temperature. The 

resultant K+ electrodes were immersed in 10-3 M KCl for 1 day to 

eliminate interfering ions on the membrane before measurements were 

conducted. A reference cocktail consisting of 78 mg PVB, 50 mg NaCl 

in 1 mL of methanol was drop-casted on the electrode of Ag/AgCl 

paste (3 aliquots of 8 mL each, with 10 min drying at room temper-

ature) and left to dry overnight at room temperature.

2.4. Characterization

Scanning electron microscopy (SEM) image were obtained using a 

field emission SEM (FE-SEM, Magellan 400, FEI company). Optical 

microscope (OM) images were obtained on an optical microscope 

(OM, BX53MTRF-S, Olympus). All electrochemical characterization 

was performed using a CHI760E (CH Instruments, USA) at room tem-

perature (25 ± 4 ℃) and obtained data were within the error range of 

± 1%. The reference electrode of Ag/AgCl/KCl (sat.) (Model K0260, 

Ametek) was used for electrochemical measurements. In order to meas-

ure the electromotive force responses, 1 M KCl solution was diluted 

to prepare from 10-1 M to 10-4 M KCl solutions.

3. Result and Discussion

Figure 1(a) displays the schematic illustration for preparing mini-

aturized K+-sensor based on screen printing process using carbon and 

Ag inks. The K+-sensor consists of two-electrode configuration with a 

dimension of 1 × 6.7 cm2. The K+-selective sensing electrode was pre-

pared by a dip-casting the K+-selective membrane cocktail onto the 

surface of carbon electrode. For a reference electrode, Ag/AgCl paste 

was printed onto Ag electrode, followed by coating with NaCl-contain-

ing PVB. The screen-printed electrodes are highly flexible [Figure 

1(b)]. This process is desirable for fabricating large-scale and low-cost 

ion sensors. Cross-sectional SEM image shows strong adhesion of car-

bon and ion-selective membrane without no cracks or pinholes [Figure 

1(c)]. When observing surface morphologies, the carbon ink and 

ion-selective membrane were uniformly distributed to the substrates 

[Figure 1(d) and (e)].

The electrochemical performance of the K+-sensor was evaluated us-

ing a potentiometric technique. The response of electromotive force 

(EMF) between sensing and reference electrodes was recorded in KCl 

solutions with the decreasing K+ concentration from 10-1 to 10-6.5 M. 

Figure 2(a) shows a calibration curve of EMF versus log[K+]. The sen-

sitivity of slope was calculated from the calibration plot in a linear 

range of 10-1~10-4 M to be 54.58 mV/decade (R2 = 0.99), which is 

close to an ideal Nernstian behavior[1,2,18]. Based on the intersection 

of the two slope lines in the calibration curve, the K+-sensor had a low 

detection limit of 10-4.7 M. To investigate the repeatability of K+-sen- 

sor, the sensor was tested repeatedly in KCl solutions with concen-
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trations from 10-1 to 10-4 M [Figure 2(b)]. The sensors exhibited the 

sensitivity for forwards and backwards directions of 57.23 and 56.83 

mV/decade, respectively. In addition, the initial EMF value at 100 mM 

KCl for K+-sensor was almost retained with a hysteresis width of 1 

mV. These results indicate that K+-sensor fabricated in this work had 

a good repeatability. The K+-sensor showed a response time of < 1 s, 

measured on decreasing K+ concentration from 10-1 to 10-3 M [Figure 

2(c)]. A flexibility of K+-sensor was also tested by measuring EMF re-

sponse under a mechanically bent state [Figure 2(d)]. The EMF re-

sponses of K+-sensor recorded in different concentration of KCl sol-

utions were consistent with those of K+-sensor measured under a me-

chanically normal state. The K+-sensors showed sensitivities of 51.2 

and 50.8 mV/decade for mechanically normal and bent states, res- 

pectively. This result implies that K+-sensor has a strong mechanical 

resistance.

The long-term analysis on K+ concentration in real samples cause 

the variation in the actual measurement results due to the potential 

drift. The potential drift of K+-sensor was investigated by measuring 

Figure 1. (a) Schematic illustration for preparing K+-sensor based on a screen-printing process, (b) photograph images of K+ sensor, (c) cross-sectional
SEM image of K+-sensor, (d) and (e) optical images of K+-sensor.

Figure 2. (a) A plot of EMF responses versus log[K+] for the K+-sensor, (b) repeatability curve for the K+-sensor with varying K+ concentration, 
(c) response time test by diluting KCl solution from 100 mM to 1 mM, (d) EMF responses of K+-sensor under mechanically normal and bent 
states.
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Figure 3. (a) Long-term stability of K+-sensor measured in 100 mM 
KCl, (b) EMF responses of K+-sensor measured in a range of 100~0.1 
mM KCl.

the EMF responses over 15 h [Figure 3(a)]. The K+-sensor exhibited 

a low potential drift of 1.9 mV/h in EMF responses measured at 100 

mM KCl. This result implies that the K+-sensor has a small deviation 

of approximately 3.4% over an hour of continuous measurement. The 

stability of K+-sensor was also tested under 10-1~10-4 M KCl solution 

for a total of 4 h [Figure 3(b)]. Based on the calibration curve, the 

K+-sensor showed a Nernstian behavior with a sensitivity of 53.1 

mV/decade. Basis on the results, the K+-sensor has a long-term stabil-

ity during the electrochemical measurements.

The ion sensors should accurately measure the target concentration 

in the presence of interfering ions. In order to check the ion selectivity 

of K+-sensors, we evaluated selectivity coefficients (K) using the sepa-

rate-solution method (SSM)[22,23] in the presence of Na+, NH4
+, Ca2+, 

and Mg2+ as interfering ions [Figure 4(a)]. As shown in Table 1, all 

K values were < 1, which is indicative of a good selectivity of 

K+-sensors against the interfering cations. Figure 4(b) shows a good se-

lectivity of K+-sensor, in which interfering EMF signals were not ob-

served when adding interfering electrolytes of 0.1 mM MgCl2, 0.1 mM 

CaCl2, 1 mM NH4Cl, and 10 mM NaCl.

The K+-sensors were used for determining the K+ concentration of 

real samples, including a commercial sports drink of Pocari SweatTM. 

The obtained K+ levels were compared with those obtained using a 

commercially available potassium ion meter (OrionTM Versa Star ProTM). 

Figure 5 shows the K+ concentration of sports drink (Pocari SweatTM) 

measured by K+-sensor and K+-meter. The obtained values are almost 

similar even after adding high-concentration KCl solution into sports 

drink. The K+-sensors showed relative small variations from the 

K+-meter.

Ions (J) log KIJ
POT KIJ

POT

Na+ -0.695 2.02 × 10-1

NH4
+ -1.653 2.22 × 10-2

Ca2+ -4.564 2.56 × 10-5

Mg2+ -5.159 6.93 × 10-6

Table 1. Selectivity coefficients of the K+-sensor using a SSM with the 
interference ions of Na+, NH4

+, Ca2+, and Mg2+

Figure 4. (a) EMF responses of K+-sensors with different ions of NH4
+,

Na+, Ca2+, and Mg2+, (b) EMF responses of K+-sensors in the presence 
of different ion concentrations of 10 mM KCl, 0.1 mM MgCl2, 0.1 
mM CaCl2, 1 mM NH4Cl, 10 mM NaCl, and 100 mM KCl.

Figure 5. K+ concentration of sports drink (Pocari SweatTM) measured 
by K+-sensor and commercial K+-meter.

The high-performance of the K+-sensors can be understood by an 

important role of carbon-based electrode as a solid contact between ion 

selective membranes and current collectors. The carbon-based electrode 

is an effective ion-to-electron transducers because they generate the 
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electrical double layer capacitance at the interface of ion selective 

membrane and solid contact. This solid contact of carbon electrode re-

sults in improved potential stability, sensitivity, selectivity, and re- 

producibility.

4. Conclusion

A low-cost and flexible screen-printed K+-sensor was fabricated to 

accurately measure K+ concentration in electrolyte solution samples. 

The screen-printing is scalable manufacturing techniques for potentio-

metric ion sensor substrates with uniform and conformal coating, re-

sulting in a high reproducibility. The potentiometric measurements us-

ing K+-sensors resulted in the high sensitivity of 54.58 mV/decade, low 

detection limit of 10-4.7 M, and fast response time of < 1 s. In addition, 

the fabricated K+-sensors showed a good repeatability and long-term 

stability. The electrochemical performance of K+-sensor withstood un-

der mechanically bent state. The K+-sensor could measure accurately 

K+ concentration in the presence of other interfering cation ions, dem-

onstrating a good selectivity. When measuring real sample of sports 

drink, the K+-sensor showed similar K+ concentration values compared 

to commercial K+-meter.
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