Browse > Article
http://dx.doi.org/10.14478/ace.2019.1087

Fabrication of Low-cost and Flexible Potassium Ion Sensors based on Screen Printing and Their Electrochemical Characteristics  

Son, Seon Gyu (Department of Chemical Engineering, Kangwon National University)
Park, Hong Jun (Department of Chemical Engineering, Kangwon National University)
Kim, Yeong Kyun (Department of Chemical Engineering, Kangwon National University)
Cho, Hyeon-Sang (Department of Chemical Engineering, Kangwon National University)
Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.6, 2019 , pp. 737-741 More about this Journal
Abstract
A low-cost and flexible potassium ion (K+) sensor was fabricated through a screen-printed process. Uniform and conformal coating of conductive inks was verified by scanning electron microscopy and optical microscopy measurements. The K+-sensors showed a high sensitivity, fast response time, and low detection limit. The sensitivity of K+-sensor was similar to that of both mechanically normal and bent states. The K+-sensor exhibited a good reproducibility with no hysteresis effect and excellent long term stability. In addition, the K+-sensor showed an excellent selectivity for K+ concentrations in the presence of other interfering cation ions. Successful measurements of K+ concentrations in sports drink samples were demonstrated by comparing K+ concentration values from K+-sensor to those of using a commercial K+-meter.
Keywords
Screen printing; Potassium ion; Potentiometric ion sensor; Ion-selective membrane; Electrochemistry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Parrilla, M. Cuartero, and G. A. Crespo, Wearable potentiometric ion sensor, TrAc Trends Anal. Chem., 110, 303-320 (2019).   DOI
2 M. Cuartero, M. Parrilla, and G. A. Crespo, Wearable potentiometric sensors for medical applications, Sensors (Basel), 19, 363 (2019).   DOI
3 C. Jiang, Y. Yao, Y. Cai, and J. Ping, All-solid-state potentiometric sensor using single-walled carbon nanohorns as transducer, Sens. Actuator B, 283, 284-289 (2019).   DOI
4 J. Hu, X. U. Zou, A. Stein, and P. Buhlmann, Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact, Anal. Chem., 86, 7111-7118 (2014).   DOI
5 E. Jaworska, W. Lewandowski, J. Mieczkowski, K. Maksymiuk, and A. Michalska, Critical assessment of graphene as ion-to-electron transducer for all-solid-state potentiometric sensors, Talanta, 97, 414-419 (2012).   DOI
6 R. Hernandez, J. Rju, J. Bobacka, C. Valles, P. Jimenez, A. M. Benito, W. K. Maser, and F. X. Rius, Reduced graphene oxide films as solid transducers in potentiometric all-solid-state ion-selective electrodes, J. Phys. Chem. C, 116, 22570-22578 (2012).   DOI
7 J. Bobacka, A. Ivaska, and A. Lewenstam, Potentiometric ion sensors, Chem. Rev., 108, 329-351 (2008).   DOI
8 J. Hu, A. stein, and P. Buhlmann, Rational design of all-solid-state ion-selective electrodes and reference electrodes, Trends Anal. Chem., 76, 102-114 (2016).   DOI
9 A. Michalska, All-solid-state ion selective and all-solid-state reference electrodes, Electroanalysis, 24, 1253-1265 (2012).   DOI
10 M. Cuartero and G. A. Crespo, All-solid-state potentiometric sensors: A new waver for in situ aquatic research, Curr. Opin. Electrochem., 10, 98-106 (2018).   DOI
11 W. J. Hyun, E. B. Secor, M. C. Hersam, C. D. Frisbie, and L. F. Francis, High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics, Adv. Mater., 27, 109-115 (2014).   DOI
12 F. Tehrani, M. B. Gastelum, K. Sheth, A. Karajic, L. Yin, R. Kumar, F. Soto, J. Kim, J. Wang, S. Barton, M. Mueller, and J. Wang, Laser-Induced graphene composites for printed, stretchable, and wearable electronics, Adv. Mater. Technol., 4, 1900162 (2019).   DOI
13 J. Bian, L. Zhou, X. Wan, C. Zhu, B. Yang, and Y. Huang, Laser Transfer, Printing, and assembly techniques for flexible electronics, Adv. Electron. Mater., 5, 21800900 (2019).
14 K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. de With, and H. Friedrich, Conductive screen printing inks by gelation of graphene dispersions, Adv. Funct. Mater., 26, 586-593 (2016).   DOI
15 S. Bellani, E. Petroni, A. E. Del Rio Castillo, N. Curreli, B. M. Garcia, R. O. Nunez, M. Prato, and F. Bonaccorso, Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors, Adv. Funct. Mater., 29, 1807659 (2019).   DOI
16 H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Converg., 6, 9-15 (2019).   DOI
17 C. Macca, The current usage of selectivity coefficients for the characterization of ion-selective electrodes. a critical survey of the 2000/2001 literature, Electroanalysis, 15, 997-1010 (2003).   DOI
18 Z. Chu, J. Peng, and W. Jin, Advanced nanomaterial inks for screen-printed chemical sensors, Sens. Actuator B, 243, 919-926 (2017).   DOI
19 F. Bonaccorso, A. Bartolotta, J. N. Coleman, and C. Backes, 2D-crystal-based functional inks, Adv. Mater., 28, 6136-6166 (2016).   DOI
20 G. Hu, J. Kang, L. W. Ng, X. Zhu, R. C. T. Howe, C. G. Jones, M. C. Hersam, and T. Hasan, Functional inks and printing of two-dimensional materials, Chem. Soc. Rev., 47. 3265-3300 (2018).   DOI
21 Y. Umezawa, P. Buhlmann, K. Umezawa, K. Tohda, and S. Amemiya, Potentiometric selectivity coefficients of ion-selective electrodes, Pure Appl. Chem., 72, 1851-2082 (2000).   DOI
22 J. H. Yoon, K. H. Kim, N. H. Bae, G. S. Sim, Y. J. Oh, S. J. Lee, T. G. Lee, K. G. Lee, and B. G. Choi, Fabrication of newspaper-based potentiometric platforms for flexible and disposable ion sensors, J. Colloid Interface Sci., 508, 167-173 (2017).   DOI
23 J. H. Yoon, S. B. Hong, S. O. Yun, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, High performance flexible pH sensor based on polyaniline nanopillar array electrode, J. Colloid Interface Sci., 490, 53-58 (2017).   DOI