DOI QR코드

DOI QR Code

Improved Mesoporous Structure of High Surface Area Carbon Nanofiber for Electrical Double-Layer Capacitors

  • Lee, Young-Geun. (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • An, Geon-Hyoung (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • Received : 2017.02.14
  • Accepted : 2017.03.10
  • Published : 2017.04.27

Abstract

Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of $703m^2g^{-1}$, total pore volume of $0.51cm^3g^{-1}$, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of $143F\;g^{-1}$, high-rate performance, high energy density of $17.9-13.0W\;h\;kg^{-1}$, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.

Keywords

References

  1. P. Simon, Y. Gogotsi and B. Dunn, Science, 343, 1210 (2014). https://doi.org/10.1126/science.1249625
  2. P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008). https://doi.org/10.1038/nmat2297
  3. M. Inagaki, H. Konno and O. Tanaike, J. Power sources, 195, 7880 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.036
  4. Y. J. Lee, G. H An and H. J. Ahn, Korea J. Mater. Res., 24, 37 (2014). https://doi.org/10.3740/MRSK.2014.24.1.37
  5. T. D. Nguyen, J. K. Ryu, B. S. N and T. N. Kim, Korea J. Mater. Res., 23, 643 (2013). https://doi.org/10.3740/MRSK.2013.23.11.643
  6. G. H. An and H. J. Ahn, ECS Solid State Lett., 2, M33 (2013).
  7. G. H. An and H. J. Ahn, Carbon, 65, 87 (2013). https://doi.org/10.1016/j.carbon.2013.08.002
  8. I. Yang, G. Lee and J. C. Jung, Korean J. Mater. Res., 26, 696 (2016). https://doi.org/10.3740/MRSK.2016.26.12.696
  9. E. Lee, S. H. Kwon, P. Choi, J. C. Jung and M. S. Kim, Korea J. Mater. Res., 24, 285 (2014). https://doi.org/10.3740/MRSK.2014.24.6.285
  10. Y. Luan, Y. Huang, L. Wang, M. Li, R. Wang and B. Jiang, J. Electroanal. Chem., 763, 90 (2016). https://doi.org/10.1016/j.jelechem.2015.12.046
  11. G. H. An and H. J. Ahn, J. Electroanal. Chem., 744, 32 (2015). https://doi.org/10.1016/j.jelechem.2015.03.009
  12. G. H. An, J. I. Sohn and H. J. Ahn, J. Mater. Chem. A, 4, 2049 (2016). https://doi.org/10.1039/C5TA10067D
  13. B. H. Kim and K. S. Yang, J. Electroanal. Chem., 714-715, 92 (2014). https://doi.org/10.1016/j.jelechem.2013.12.019
  14. B. H. Kim, C. H. Kim and D. G. Lee, J. Electroanal. Chem., 760, 64 (2016). https://doi.org/10.1016/j.jelechem.2015.12.001
  15. G. H. An, E. H. Lee and H. J. Ahn, J. Alloys Compd., 682, 746 (2016). https://doi.org/10.1016/j.jallcom.2016.05.033
  16. G. H. An, B. R. Koo and H. J. Ahn, Phys. Chem. Chem. Phys., 18, 6587 (2016). https://doi.org/10.1039/C6CP00035E
  17. D. P. Upare, S. Yoon and C. W. Lee, Korean J. Chem. Eng., 28, 731 (2011). https://doi.org/10.1007/s11814-010-0460-8
  18. G. H. An and H. J. Ahn, J. Power sources, 272, 828 (2014). https://doi.org/10.1016/j.jpowsour.2014.09.032
  19. G. H. An, D. Y. Lee, Y. J. Lee and H. J. Ahn, ACS Appl. Mater. Inter., 8, 30264 (2016). https://doi.org/10.1021/acsami.6b10868
  20. G. Yu, X. Xie, L. Pan, Z. Bao and Y. Cui, Nano Energy, 2, 213 (2013). https://doi.org/10.1016/j.nanoen.2012.10.006
  21. J. Y. Hong, J. J. Wie, Y. Xu and H. S. Park, Phys. Chem. Chem. Phys., 17, 30946 (2015). https://doi.org/10.1039/C5CP04203H
  22. Y. Huang, J. Liang and Y. Chen, Small, 8, 1805 (2012). https://doi.org/10.1002/smll.201102635
  23. G. H. An, H. J. Ahn and W. K. Hong, J. Power Sources, 274, 536 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.086
  24. B. H. Kim, K. S. Yang and J. P. Ferraris, Electrochim. Acta, 75, 325 (2012). https://doi.org/10.1016/j.electacta.2012.05.004
  25. G. H. An, D. Y. Lee and H. J. Ahn, ACS Appl. Mater. Inter., 8, 19466 (2016). https://doi.org/10.1021/acsami.6b05307
  26. J. Wang and S. Kaskel, J. Mater. Chem., 22, 23710 (2012). https://doi.org/10.1039/c2jm34066f
  27. Y. Ji, T. Li, L. Zhu, X. Wang and Q. Lin, Appl. Surf. Sci., 254, 506 (2007). https://doi.org/10.1016/j.apsusc.2007.06.034
  28. J. W. Lang, X. B. Yan, W. W. Liu, R. T. Wang and Q. J. Xue, J. Power Sources, 204, 220 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.044
  29. G. H. An and H. J. Ahn, Ceram. Int., 38, 3197 (2012). https://doi.org/10.1016/j.ceramint.2011.12.024
  30. G. H. An and H. J. Ahn, ECS Solid State Lett., 3, M29 (2014). https://doi.org/10.1149/2.0061407ssl