Browse > Article
http://dx.doi.org/10.5695/JKISE.2016.49.6.539

Synthesis and Characterization of CuCo2O4 Nanofiber Electrocatalyst for Oxygen Evolution Reaction  

Won, Mi So (Surface Technology Division, Korea Institute of Materials Science (KIMS))
Jang, Myeong-Je (Surface Technology Division, Korea Institute of Materials Science (KIMS))
Lee, Kyu Hwan (Surface Technology Division, Korea Institute of Materials Science (KIMS))
Kim, Yang Do (Department of Materials Science and Engineering, Pusan National University)
Choi, Sung Mook (Surface Technology Division, Korea Institute of Materials Science (KIMS))
Publication Information
Journal of the Korean institute of surface engineering / v.49, no.6, 2016 , pp. 539-548 More about this Journal
Abstract
The non-noble 1D nanofibers(NFs) prepared by electrospinning and calcination method were used as oxygen evolution reaction (OER) electrocatalyst for water electrolysis. The electrospinning process and rate of solution composition was optimized to prepare uniform and non-beaded PVP polymer electrospun NFs. The diameter and morphology of PVP NFs changed in accordance with the viscosity and ion conductivity. The clean metal precursor contained electrospun fibers were synthesized via the optimized electrospinning process and solution composition. The calcined $CuCo_2O_4$ NFs catalyst showed higher activity and long-term cycle stability for OER compared with other $Co_3O_4$, $NiCo_2O$ NF catalysts. Furthermore, the $CuCo_2O_4$ NFs maintained the OER activity during long-term cycle test compared with commercial $CuCo_2O_4$ nanoparticle catalyst due to unique physicochemical and electrochemical properties by1D nanostructure.
Keywords
Electrolysis; Electrocatalyst; Oxygen evolution reaction; Electrospinning; Nanofiber;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M.T. Hunley and T.E. Long, Electrospinning functional nanoscale fibers: a perspective for the future, Polymer International, 57 (2008) 385-389.   DOI
2 J. Lannutti, D. Reneker, T. Ma, D. Tomasko and D. Farson, Electrospinning for tissue engineering scaffolds, Materials Science and Engineering: C, 27 (2007) 504-509.   DOI
3 Y. Ahn, S. Park, G. Kim, Y. Hwang, C. Lee, H. Shin and J. Lee, Development of high efficiency nanofilters made of nanofibers, Current Applied Physics, 6 (2006) 1030-1035.   DOI
4 W.E. Teo and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology, 17 (2006) R89.   DOI
5 E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee and M.L. Brongersma, Self-limited plasmonic welding of silver nanowire junctions, Nature materials, 11 (2012) 241-249.   DOI
6 E. Zussman, A. Theron and A. Yarin, Formation of nanofiber crossbars in electrospinning, Applied Physics Letters, 82 (2003) 973-975.   DOI
7 S. Haider, A. Haider, A. Ahmad, S.U.-D. Khan, W.A. Almasry and M. Sarfarz, ELECTROSPUN NANOFIBERS AFFINITY MEMBRANES FOR WATER HAZARDS REMEDIATION, Nanotechnology Research Journal, 8 (2015) 511.
8 Z.-M. Huang, Y.-Z. Zhang, M. Kotaki and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites science and technology, 63 (2003) 2223-2253.   DOI
9 S. Ahir, Y. Huang and E. Terentjev, Polymers with aligned carbon nanotubes: Active composite materials, Polymer, 49 (2008) 3841-3854.   DOI
10 D.H. Reneker and A.L. Yarin, Electrospinning jets and polymer nanofibers, Polymer, 49 (2008) 2387-2425.   DOI
11 L. Chen, X. Dong, Y. Wang and Y. Xia, Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide, Nature communications, 7 (2016).
12 R.D. Smith, M.S. Prévot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K.J. Siu, S. Trudel and C.P. Berlinguette, Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis, Science, 340 (2013) 60-63.   DOI
13 E.A. Parson and D.W. Keith, Fossil fuels without $CO_2$ emissions, Science, 282 (1998) 1053-1054.   DOI
14 S. Perathoner and G. Centi, $CO_2$ recycling: A key strategy to introduce green energy in the chemical production chain, ChemSusChem, 7 (2014) 1274-1282.   DOI
15 M.K. Datta, K. Kadakia, O.I. Velikokhatnyi, P.H. Jampani, S.J. Chung, J.A. Poston, A. Manivannan and P.N. Kumta, High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis, Journal of Materials Chemistry A, 1 (2013) 4026-4037.   DOI
16 M. Curry-Nkansah, D. Driscoll, R. Farmer, R. Garland, J. Gruber and N. Gupta, Hydrogen production roadmap, technology pathways to the future, Freedom CAR & fuel partnership hydrogen production technical team, (2009).
17 C.-J. Winter, Hydrogen energyy-abundant, efficient, clean: a debate over the energy-system-of-change, International Journal of Hydrogen Energy, 34 (2009) S1-S52.   DOI
18 M.W. Kanan and D.G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and $Co^{2+}$, Science, 321 (2008) 1072-1075.   DOI
19 M. Wang, Z. Wang, X. Gong and Z. Guo, The intensification technologies to water electrolysis for hydrogen production-A review, Renewable and Sustainable Energy Reviews, 29 (2014) 573-588.   DOI
20 S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari and Y. Kiros, Advanced alkaline water electrolysis, Electrochimica Acta, 82 (2012) 384-391.   DOI
21 M. Unlu, J. Zhou and P.A. Kohl, Hybrid anion and proton exchange membrane fuel cells, The Journal of Physical Chemistry C, 113 (2009) 11416-11423.
22 K. Zeng and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Progress in Energy and Combustion Science, 36 (2010) 307-326.   DOI
23 F. Barbir, PEM electrolysis for production of hydrogen from renewable energy sources, Solar energy, 78 (2005) 661-669.   DOI
24 P. Millet, N. Mbemba, S. Grigoriev, V. Fateev, A. Aukauloo and C. Etievant, Electrochemical performances of PEM water electrolysis cells and perspectives, International Journal of Hydrogen Energy, 36 (2011) 4134-4142.   DOI
25 K. Ayers and C. Capuano, Economical production of hydrogen through development of novel, high efficiency electrocatalysts for alkaline membrane electrolysis, DOE Hydrogen and Fuel Cell Program Review, (2013).
26 C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi and M. Comotti, Highly Efficient Platinum Group Metal Free Based Membrane-Electrode Assembly for Anion Exchange Membrane Water Electrolysis, Angewandte Chemie, 126 (2014) 1402-1405.   DOI
27 Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner and C.-Y. Wang, Solid-state water electrolysis with an alkaline membrane, Journal of the American Chemical Society, 134 (2012) 9054-9057.   DOI
28 A. Greiner and J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angewandte Chemie International Edition, 46 (2007) 5670-5703.   DOI
29 D.H. Reneker, A.L. Yarin, H. Fong and S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, Journal of Applied physics, 87 (2000) 4531-4547.   DOI
30 D. Li and Y. Xia, Electrospinning of nanofibers: reinventing the wheel?, Advanced materials, 16 (2004) 1151-1170.   DOI
31 S.L. Shenoy, W.D. Bates, H.L. Frisch and G.E. Wnek, Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymerr-polymer interaction limit, Polymer, 46 (2005) 3372-3384.   DOI
32 P. Gupta, C. Elkins, T.E. Long and G.L. Wilkes, Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent, Polymer, 46 (2005) 4799-4810.   DOI
33 J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough and Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles, Science, 334 (2011) 1383-1385.   DOI
34 J.R. Varcoe and R.C. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells, Fuel cells, 5 (2005) 187-200.   DOI
35 M. Carmo, D.L. Fritz, J. Mergel and D. Stolten, A comprehensive review on PEM water electrolysis, International journal of hydrogen energy, 38 (2013) 4901-4934.   DOI
36 X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen and S. Yang, A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction, Angewandte Chemie, 126 (2014) 7714-7718.   DOI
37 A. Paudel, J. Van Humbeeck and G. Van den Mooter, Theoretical and experimental investigation on the solid solubility and miscibility of naproxen in poly (vinylpyrrolidone), Molecular pharmaceutics, 7 (2010) 1133-1148.   DOI
38 L. Li, Z. Jiang, J. Xu and T. Fang, Predicting poly (vinyl pyrrolidone)'s solubility parameter and systematic investigation of the parameters of electrospinning with response surface methodology, Journal of Applied Polymer Science, 131 (2014).
39 S. Megelski, J.S. Stephens, D.B. Chase and J.F. Rabolt, Micro-and nanostructured surface morphology on electrospun polymer fibers, Macromolecules, 35 (2002) 8456-8466.   DOI
40 J.M. Deitzel, J. Kleinmeyer, D. Harris and N.B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 42 (2001) 261-272.   DOI
41 H. Yan, D. Zhang, J. Xu, Y. Lu, Y. Liu, K. Qiu, Y. Zhang and Y. Luo, Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors, Nanoscale research letters, 9 (2014) 1-7.   DOI
42 E. Fabbri, A. Habereder, K. Waltar, R. Kotz and T. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction, Catalysis Science & Technology, 4 (2014) 3800-3821.   DOI
43 J. Wu, Y. Xue, X. Yan, W. Yan, Q. Cheng and Y. Xie, $Co_3O_4$ nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst, Nano Research, 5 (2012) 521-530.   DOI
44 X. Liu, H. Jia, Z. Sun, H. Chen, P. Xu and P. Du, Nanostructured copper oxide electrodeposited from copper (II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction, Electrochemistry Communications, 46 (2014) 1-4.   DOI
45 S. Chattopadhyay, S. Chakraborty, D. Laha, R. Baral, P. Pramanik and S. Roy, Surface-modified cobalt oxide nanoparticles: new opportunities for anti-cancer drug development, Cancer nanotechnology, 3 (2012) 13-23.   DOI
46 B. Kaur, B. Satpati and R. Srivastava, Synthesis of $NiCo_2O_4$/Nano-ZSM-5 nanocomposite material with enhanced electrochemical properties for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan, New Journal of Chemistry, 39 (2015) 1115-1124.   DOI
47 J. Huang, S. Virji, B.H. Weiller and R.B. Kaner, Polyaniline nanofibers: facile synthesis and chemical sensors, Journal of the American Chemical Society, 125 (2003) 314-315.   DOI
48 R. Singh, J. Pandey, N. Singh, B. Lal, P. Chartier and J.-F. Koenig, Sol-gel derived spinel $M_xCo_{3-x}O_4$ (M= Ni, Cu; 0$<\preceq$ x$<\preceq$ 1) films and oxygen evolution, Electrochimica Acta, 45 (2000) 1911-1919.   DOI
49 X. Wu and K. Scott, $Cu_xCo_{3-x}O_4$ (0$<\preceq$ x$\prec$ 1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers, Journal of Materials Chemistry, 21 (2011) 12344-12351.   DOI
50 G. Che, B. Lakshmi, C. Martin, E. Fisher and R.S. Ruoff, Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method, Chemistry of Materials, 10 (1998) 260-267.   DOI
51 J.D. Hartgerink, E. Beniash and S.I. Stupp, Self-assembly and mineralization of peptide-amphiphile nanofibers, Science, 294 (2001) 1684-1688.   DOI
52 N. Bhardwaj and S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnology advances, 28 (2010) 325-347.   DOI
53 J.-M. Hu, J.-Q. Zhang and C.-N. Cao, Oxygen evolution reaction on $IrO_2$-based DSA(R) type electrodes: kinetics analysis of Tafel lines and EIS, International Journal of Hydrogen Energy, 29 (2004) 791-797.   DOI
54 W. Yao, F.-L. Li, H.-X. Li and J.-P. Lang, Fabrication of hollow Cu2O@ CuO-supported Au-Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction, Journal of Materials Chemistry A, 3 (2015) 4578-4585.   DOI
55 A. Patterson, The Scherrer formula for X-ray particle size determination, Physical review, 56 (1939) 978.   DOI
56 Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, $Co_3O_4$ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nature materials, 10 (2011) 780-786.   DOI
57 S. Fierro, A. Kapalka and C. Comninellis, Electrochemical comparison between $IrO_2$ prepared by thermal treatment of iridium metal and $IrO_2$ prepared by thermal decomposition of $H_2IrCl_6$ solution, Electrochemistry communications, 12 (2010) 172-174.   DOI