• 제목/요약/키워드: Elastic Catenary Cable

검색결과 26건 처리시간 0.041초

Approximate calculation of the static analysis of a lifted stay cable in super-long span cable-stayed bridges

  • Zhao, Xinwei;Xiao, Rucheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.635-655
    • /
    • 2020
  • The sag effect of long stay cables is one of the key factors restricting further increase in the span of cable-stayed bridges. Based on the formerly proposed concept of long stay cables lifted by an auxiliary suspension cable in cross-strait cable-stayed bridges, corresponding static approximate calculations and analytical theory based on catenary and parabolic cable configurations are established. Taking a main span 1400 m cable-stayed bridge as the research object, three typical lifting conditions and the whole process of auxiliary cable lifting are analyzed and discussed. The results show that the sag effect is effectively reduced. The support efficiency is only improved when the cables are lifted above the original cable chord. Reduction of the horizontal component force of the cable is limited. The equivalent elastic modulus and the vertical support stiffness of the lifted cables are significantly increased with increased horizontal projection length and not sensitive to the change of the lifting point position. The scheme of lifting the cable to the chord midpoint is more economical because of the less steel required for the auxiliary suspension cable, but its effect on improving the vertical support efficiency is limited. The support efficiency is better when the cable is lifted to the cable end tangential to the original cable chord, but the lifting force and the cross-sectional area of the auxiliary suspension cable are doubled. The approximate calculation results of the lifted cables are very close to the numerical analysis results, which verifies the applicability of the approximation method proposed in this study. The results of parabolic approximation calculations are approximately equal to that of catenary cable geometry. As the parabolic approximation analysis theory of lifted cables is more convenient in mathematical processing, it is feasible to use parabolic approximation analysis theory as the analytical method for the conceptual design of lifted cables of super-long span cable-stayed bridges.

3차원 정적 집중하중을 받는 복합 탄성 케이블의 정적 해석 (Analytic Investigation of Multi-Component Elastic Cables under 3-D Concentrated Static Loads)

  • 최윤락
    • 한국해양공학회지
    • /
    • 제28권3호
    • /
    • pp.193-198
    • /
    • 2014
  • An elastic cable with piecewise constant properties under the action of concentrated static loads is studied analytically. Analytic solutions for catenary cables are combined at the discontinuous points caused by the discontinuous elastic properties or concentrated loads. The application of the boundary conditions at both ends of the multi-component cable results in three algebraic non-linear equations for three unknown parameters, which are determined numerically. The solutions for the shape, tension, elongation, and cross-sectional contraction of the cable are expressed in closed forms. Some examples are given for cases of two- and three-dimensional loads.

해양 케이블 지지구조물의 구조해석을 위한 개선된 유한요소해석모델 (An Improved Finite Element Analysis Model of Offshore Cable-Supported Structures)

  • 김선훈;송명관;노혁천
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.51-57
    • /
    • 2004
  • In this study, the improved three-dimensional analysis model designed for a more accurate analysis of marine cable-supported structures, is presented. In this improved analysis model, the beam elements, of which the stability function is derived using Taylor's series expansions, are used to model space frame structures, and the truss elements. The equivalent elastic modulus of the truss elements is evaluated on the assumption that the deflection curve of a cable has a catenary function. By using the proposed three-dimensional analysis model, nonlinear static analysis is carried out for some cable-supported structures. The results are compared with previous studies and show good agreement with their findings.

사장교의 개선된 초기형상 해석법 (An Improved Method for Initial Shape Analysis of Cable-Stayed Bridges)

  • 김문영;경용수;이준석
    • 한국강구조학회 논문집
    • /
    • 제15권2호
    • /
    • pp.175-185
    • /
    • 2003
  • 사장교의 정확한 초기형상을 결정하기 위하여 초기부재력법과 TCUD법을 효과적으로 결합시킨 개선된 해석방법을 제시한다. 먼저 사장재, 주탑 그리고 주형을 모델링하기 위하여 무응력길이의 변화를 고려한 탄성현수선요소, 보-기둥요소의 힘-변형관계식과 접선강성 행렬 산정법을 간략히 제시한다. 이제 케이블의 무응력길이를 변수로 취급하여 교량 전체의 접선강성행렬을 산정하고, 경계조건 이외에 케이블 개수만큼의 절점변위를 설계자의 초기형상에 가깝게 되도록 추가적으로 절점변위를 구속하여 절점변위 및 무응력길이의 증분을 산정하고 이를 토대로 케이블 부재력과 주형 및 주탑의 부재력을 산정한다. 이렇게 계산된 부재력으로부터 불평형하중을 산정하고 수렴이 될 때까지 다시 반복계산이 이루어진다. 수렴이 되었을 때 사장교의 주탑 및 주형의 축방향 변위를 제거하기 위하여 초기부재력법을 적용한다. 결론적으로, 케이블의 무응력길이를 변수로 추가함으로써 사장재 주형정착부의 수직변위와 주탑의 수평변위를 설계목적에 적합하도록 제어하여 휨모멘트를 최소화할 수 있었고, 초기부재력법을 결합시켜 주형, 주탑의 축방향변위가 발생하지 않는 해석결과를 얻었다.

현수교의 개선된 초기형상 해석법 (An Improved Method for Initial Shape Analysis of Subpension Bridges)

  • 김문영;경용수;이준석
    • 한국강구조학회 논문집
    • /
    • 제15권2호
    • /
    • pp.219-229
    • /
    • 2003
  • 타정식 및 자정식 현수교의 정확한 초기형상을 결정하기 위하여 초기부재력법과 TCUD법을 효과적으로 결합시킨 개선된 해석 방법을 제시한다. 먼저 기하학적 선형해석을 수행하여 장력의 초기값을 가정한다. 이제 케이블의 무응력길이를 변수로 취급하여 TCUD법에 근거한 반복계산이 이루어진다. 수렴이 되면 현수교의 주탑 및 보강형의 축방향 변위를 제거하기 위하여, 케이블의 장력과 주탑, 보강형의 압축력, 그리고 주케이블의 절점 수직변위의 수렴된 값은 이용하고 나머지 부재력과 좌표값은 초기값으로 재조정하여 초기부재력법을 적용한다. 케이블요소의 모델링에서 무응력길이를 변수로 추가함으로써 주케이블 및 행어 정착부의 변위와 주탑의 수평변위를 설계목적에 적합하도록 제어하여 휨모멘트를 최소화하였고, 초기부재력법을 결합시켜 보강형, 주탑의 축방향변위가 발생하지 않는 해석결과를 얻을 수 있었다.

3차원 케이블망의 정적 비선형 해석 및 초기 평형상태의 결정 (Non-linear Static Analysis and Determination of Initial Equilibrium States of Space Cable Nets)

  • 김문영;김남일
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.134-141
    • /
    • 1997
  • A geometrically non-linear finite element formulation of spatial cable networks is presented using three cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element, and the isoparametric cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static non-linear behaviors of cable nets.

  • PDF

탄성 대변형 다물체동역학을 위한 슬라이딩조인트 개발 (The Development of a Sliding Joint for Very Flexible Multibody Dynamics)

  • 서종휘;정일호;수기야마;사바나;박태원
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, a formulation for a spatial sliding joint, which a general multibody can move along a very flexible cable, is derived using absolute nodal coordinates and non-generalized coordinate. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the non-generalized coordinate, which is neither related to the inertia forces nor external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. In the constraint equation for the sliding joint, since three constraint equations are imposed and one non-generalized coordinate is introduced, one constraint equation is systematically eliminated. Therefore, there are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph/catenary systems for high speed-trains.

사장교의 구조해석을 위한 개선된 해석모델 (An Improved Model for Structural Analysis of Cable-stayed Bridges)

  • 최창근;김선훈;송명관
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.69-76
    • /
    • 2000
  • In this study, an improved analysis model for the more efficient and accurate structural analysis of cable-stayed bridges is presented. In this model, beam elements, of which stability functions are stabilized by the use of Taylor's series expansions, are used to model space frame structures, and truss elements, of which equivalent elastic moduli are evaluated on the assumption that the deflected shape of a cable has a catenary function, are used to model cables. By using the proposed analysis model, nonlinear static analysis and natural vibration analysis of 2-dimensional and 3-dimensional cable-stayed bridges are carried out and are compared with the analysis results reported by other researchers.

  • PDF

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

탄성현수선 및 탄성 포물선 케이블 요소의 비교연구 (Comparison Study of Elastic Catenary and Elastic Parabolic Cable Elements)

  • 김동영;송요한;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.224-227
    • /
    • 2011
  • 케이블구조의 기하학적 비선형해석을 위한 탄성포물선 케이블요소를 제시한다. 탄성현수선 케이블요소에 대한 적합조건과 접선강도행렬을 토대로 장력이 충분히 도입되어 자중에 의한 처짐 형상이 포물선에 가깝다는 가정 하에서 무응력길이를 포함하는 탄성포물선 케이블요소의 비선형 힘-변형관계식과 접선강도 행렬을 구한다. 또한 현(chord)방향으로 두 케이블요소의 등가 공칭장력식을 정의한다. 탄성포물선 케이블 요소의 수치적인 정확성을 확인하기 위하여, 경사진 케이블을 탄성현수선과 탄성포물선 케이블요소로 각각 모델링하여 매개변수 해석을 수행하고 비교, 분석한 결과를 제시한다.

  • PDF