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ABSTRACT

A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires.
In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using
absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum
mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large
deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute
nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic
stress during flexible multibody simulation is presented based on Euler-Bernouili beam theory, and its reliability is
verified by a commercial program NASTRAN. This method is signinficant in that the structural and multibody dynamics
models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible
beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-
generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on
which a multibody system moves along its length is presented as a numerical example.
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1. Introduction

A very flexible beam can be used to model various
types of engineering parts such as cables, wires, and
ropes. The dynamic properties of the flexible beam in
such parts can be very important factors in influencing
the dynamic stability and behavior of a mechanical
muitibody system that interacts with the beam.

There have been many studies on the mechanical
properties of beams ', but most have been restricted to
structure-based problems such as those associated with
railroad, bridge, and building design. In other words,
there is still an insufficient number of studies that
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simultaneously analyze multibody systems and their
dynamic interaction with a nonlinear large deformable
beam. This is because dynamic analysis becomes very
complex when it is coupled with a multibody system.

In studies that analyze the dynamic problems of a
flexible beam with which a mass or a multibody system
interacts, a lumped mass is considered where the
continuous beam is modeled as discrete >*. This method
has been mainly used for the modeling of very flexible
continuous mechanics, such as belts, chains, and cables
in the multibody dynamic analysis method, but a large
number of lumped mass needs to be used. So the
numerical efficiency may decline. Moreover, it is very
difficult to define the
constraints between a multibody system and a continuous

sliding or interconnecting

flexible beam.
To analyze flexible multibody dynamics using modal
coordinates, Hwang 5 derived a constraint equation for a

50



J. H. Seo, I. H. Jung, T. W. Park: International Journal of Precision Engineering and Manufacturing Vol.5, No.4.

sliding joint that can move along a flexible body.
However, the boundary condition changes depending on
the relative motion of the two flexible bodies connected
by the joint, so it is hard to present the exact constraint
condition of the sliding joint by using a deformation
mode that depends on time. In addition, the method
assumed linear elastic deformation, so it is hard to apply
to the dynamic problems of a large deformable beam.
Park ® derived the combined differential-algebraic
equations of motion using a multibody dynamics theory
to analyze a constrained multibody mechanical system

moving on an elastic beam structure with a contact effect.

This method can consider various foundation supports
and constraints, as well as the structural damping effect
of the beam structure. However, this method assumed
linear elastic deformation, so it is difficult to apply to
large deformable beam problems.

Sugiyama ' proposed a constraint equation for a
sliding joint wherein a mass moves along a large
deformable beam using absolute nodal coordinates
formultion. This method can analyze the dynamic
interaction between the cable and the mass by assuming
the large deformable cable as a beam element, but when
the cable is modeled as more than two finite beam
clements, it is hard to define the sliding joint due to
discontinuousness at the nodal point.

Simo and Vu-Quoc § proposed a large rotation vector
formulation to analyze a very flexible beam, included in
a multibody system. But this formulation leads to a
redundant representation and can lead to fundamental
problems in defining the generalized forces associated
with the beam generalized coordinates. In other words,
this can lead to singularity problems when a slender
beam is considered.

In addition to these studies, there have also been
studies that analyzed the dynamic behavior and vibration
of a beam **2, but most of thern only calculated dynamic
properties from the viewpoint of structural dynamics.
Thus, studies on the dynamic problems of a flexible
beam coupled with a multibody system are rare.

In this paper, to consider the dynamic interaction
between a continuous large deformable beam—which
can be modeled as a cable or a wire—and a rigid
multibody system, a generalized system equations of
motion is derived using absolute nodal coordinates '>'*
and rigid body coordinates. A very flexible catenary
cable on which a multibody system moves along its
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length is presented as a numerical example in this paper.
To do this, formulations for the sliding joint between a
very flexible beam and a rigid body were derived using a
non-generalized coordinate, which has no inertia or
forces. This sliding joint is very important to many
mechanical applications such as ski lifts, cable cars, the
pantograph-catenary of high-speed trains, and pulley
systems.

In addition, a method for calculating the dynamic
stress of a large deformable beam in flexible multibody
dynamics using absolute nodal coordinates is presented
and is compared with the results from the commercial
analysis program NASTRAN . The calculated dynamic
stress can be used to predict the fatigue life of a
mechanical part 16 In other words, the presented method
of this paper is significant in that the structural and
multibody dynamics models can be unified into one
numerical system.

In this study, the muitibody system was considered to
be rigid bodies, and the large flexible beam was modeled
using the absolute nodal coordinates in order to present
the geometric nonlinearity and large deformation
phenomena. The study was conducted focusing on the 2-
dimensional system.

2. Dynamic Equations of a Large Deformable
Beam Using Absolute Nodal Coordinates

2.1 Introduction of Absolute Nodal Coordinates

Formulation
Fig. 1 shows the global displacement and slope of

absolute nodal points at both ends of the 2-dimensional
beam clement i for the global reference frame, which can
present the large deformable property of a cable or a wire

Element ;/ .

Fig. 1 The global position of a point on a beam element i
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Eq. (1) shows that an arbitrary displacement of the
beam element can be expressed with the shape function
and absolute nodal coordinates.

r'=| " |=8'(x) e (1)

i
x
i
y

Here, y is an arbitrary point in the beam element for the

global reference frame and §' is the shape function of
the element. The shape function can be expressed using
the cubic polynomial equation on the deformation in
longitudinal and transversal directions as in Eq.(2). The
shape function of the equation is defined not in local
nodal coordinates but in a global reference frame.
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Here, / is the length of the beam element i before the
deformation, and x is the an arbitrary displacement in

direction. @ is the

longitudinal absolute nodal

coordinates vector that shows the displacement and slope
of the nodal points at two ends of the element, and it can
be written as the following equation.

e =[ef e e e} el e ) ei] 3)

Here, e], €, , €; , e is the absolute nodal displacement
of nodal points A and B, and eg, ef; , e; " e; is the global

slope. These can be written as Eq. (4).

e =r(x=0) , e=r(x=0)
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Using these displacement kinematics, the kinetic
energy of the beam element i can be calculated as Eq. (5)
with Eq. (1).

T' = 2ip'¥ ¢av
2 )
- 3¢ [Ip"s"rs‘dV’]e'
)
= ;—é'TMi ei

Here, pi and V' are the density and volume of the beam
element i. M’ is the mass matrix, and it has properties of
a symmetric matrix. It can only be defined by §', so if
the system is determined, it only needs to be calculated

once. Since it is a function of length / and mass m, it can
be rewritten as Eq. (6).

. T . el T
M' = J.p’S' SV’ = m'J.OS’ S'dx ©6)
o

The elastic force generated from the deformation in
longitudinal and transverse direction of the beam element
can be obtained after calculating the total strain energy
and partially differentiating the result on the generalized
coordinates. The study obtains the elastic force based on
the classic Euler-Bernoulli beam theory.

®
Fig. 2 (a) Original and (b) Current deformation of
longitudinal and transverse

Fig. 2 shows the deformation of longitudinal
direction and transversal direction, and the strain at the
arbitrary point Py can be calculated using Eq. (7).
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Here, S, is equal to Si’x:O. i and j are the unit vectors

of the x-axis and y-axis of the beam’s reference
coordinates. The total strain energy of the beam can be
obtained by integrating the strain energy generated from
the arbitrary displacement in the total length, as in Eq.

"

2 2 2
Ui=ljl Ea(%j + EI a_uz_, dx
270 Ox ox
®
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Here, F is the Young’s modulus, a is the cross-sectional
area, and [ is the beam’s second moment of inertia. In
addition, K’ as the stiffness matrix is expressed as a

nonlinear function for the absolute nodal coordinates ‘%,
The
differentiating the total strain energy into generalized

elastic force can be obtained by partially
coordinates as in Eq. (9), and it changes depending on
the time. Therefore, the required calculations outnumber

those needed for the mass matrix of Eq. (6).

ou’ ;
[a—e'j =Q, )

Until now, the study was illustrated based on the classic
Euler-Bernoulli beam theory to calculate the elastic force.

2.2 Dynamic Equation of a Constrained

Flexible Beam
The dynamic equation of a constrained flexible beam,

which can present a large deformable cable or wire, can
be written as Eq. (10) after going through the general
assembly process used in the Finite Element Method .

M€ + @] L+Q,+Q, =Q. (10)

In this equation, M? is the assembled global mass matrix
of the beam elements and ® = ®(e,?) is the constraint
equation. @, is the constraint Jacobian matrix and }, is
the Lagrange multiplier vector. Q, is the elastic force
vector and Qy is the structural damping force vector for
the flexible beam element. Q, is the generalized external

force vector caused by gravity and spring-damper
element. Here, a linear model of damping force is used to
consider internal structural damping effects. In other
words, a particular form of the proportional Ralyeigh

damping method is used in Eq. (11) 2021

Q,=Cé
C=aM‘ + K,

a = 20,0,(5,0, = £,0,)

11
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IB _ 2(§2a)2 — g\a)l)
- 2 2
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Here, K, is the assembled stiffness matrix from Eq. (8).
The coefficients o and B depend on the frequencies
@, and @, , as well as on the damping ratios £, and £,
for the first two modes of the beam. The frequencies
o, and @, should be calculated by eigen value
analysis using Eq. (10), and the ratios &, and &, should
be calculated from experimental data **'. When second

differentiation was done on time in @, the right-hand

side of acceleration for the constraint equation > can
be obtained as Eq. (12).
®(e,)=0
(12)

D é = —(De) e—206-D, =7

If Eqgs. (10) and (12) are written in matrix form, the
dynamic equation of the flexible beam can be obtained
using only absolute nodal coordinates as Eq. (13).

M @ |[e a
e _|Q a3

® 0 || |v

e

Here, Q" =Q, ~ Q. — Q-
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3. Combined System Equations of Motion and
Dynamic Stress Calculation

3.1 System Equations of Motion Including a

Flexible Beam
Up to this point, we only derived the dynamic

equations of the large flexible beam using absolute nodal
coordinates. To analyze the dynamic interaction with the
multibody system, which is a rigid body, after coupling,
there should be a system equations of motion that
includes various constraint equations between the
flexible beam and the multibody system. Consequently,
in order to consider both flexible beams and rigid bodies
simultaneously in a multibody system, a new generalized
coordinate system must be defined, as in the form

q=[r",e’]. Additionally, in the constraint equation
®(r,e,/)=0 , the mass matrix also needs to be

redefined. Consequently, the system’s equations of
motion can be written as Eq. (14).

M 0 @ |[¢ Q'
0 M@ ||¢|=Q°
© @ 0 || |V

(14)

Here, r =[r',r’,---r™] is the rigid body coordinates to
define the multibody, where nr is the number of rigid

bodies that compose the multibody, and the p* vector
has three components as r* =[x*,y"*,0%]". M" is the
rigid bodies’” mass matrix, @ _ is the Jacobian matrix for

the rigid body coordinates, and Q" is the generalized
external force for the rigid body coordinates. Eq. (14) is a
differential algebraic equation, and to solve such an
equation, many methods are suggested 22, In this study,
4-th Runge-Kutta Integration Method was used to solve
Eq. (14).

3.2 Stress Calculation of a Beam Element Using

Absolute Nodal Coordinates
When considering Eq. (14), it is possible to calculate

the dynamic stresses of a beam in a multibody system,
because the equation is derived based on the continuous
mechanics theory and the finite element method. The

dynamic stress can be used to predict the fatigue life of a
mechanical part '°. This study presents the computation
method based on Euler-Bernoulli beam theory.

y
| © H
! ~ .
R T T MO %7 Beam axi
Py /,' _ 1
e— S —K
(@) Ax )

Fig. 3 (a) Undeformed and (b) Deformed beam segment

Fig. 3 shows the arbitrary point at the undeformed
and deformed beam segment, which is shown in Fig. 2,
where p is the curvature radius and the reciprocal of the

curvature ¥ . The bending moment at position p of the

deformed beam can be written in terms of the beam’s
curvature as follows 2*.

M=E]1c=£i

p

(15)

Here, the curvature K can be written as Eq. (16) using

Serret-Frenet formulas 2.

dzrl B sl T T
2\’ -

dn Ir']3 'rvT rlr/z B f3
dn=AeTvax | r= N:{O‘l} (16)
dx 1 0

Here, n is the length along its curvature. If the
deformation in the longitudinal direction is minimal,
f =1, and Eq. (16) can be written as Eq. (17) .

d’r'(x,1) a* ;
T {a?sm 0
Sﬂ_[&" 08 05808 0}

:]‘”:

K=~

an
(Si)”: S" ” ” ” "
"1 710 ST 0S8 0S80 S

However, if the longitudinal deformation may not be
ignored, the value of f must be considered seriously in
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Eq. (16). The strain and stress with respect to time at an
arbitrary point of a beam that has undergone bending
deformation can be expressed as in Eq. (18) **.

£,(x,p.0) = y k(x,0) = =
p

(18)
M
o.(x,y,t)= Ee, = Eyx = —Il

If the absolute nodal coordinates e/(;) of a beam

element that considers the effects of kinetic inertia are
calculated from Eq. (14), the beam element’s curvature at
an arbitrary point can be calculated by Eq. (17).
Furthermore, distribution
predicted by Eq. (18). In order to use this calculated
dynamic stress in the fatigue analysis, either the

dynamic stress can be

maximum stress must be found, or the stress at the
Barlow point *® may be used. This choice is left to the
discretion of the engineer carrying out the fatigue
analysis. This presented method is significant in that it
brings up the possibility of merging the two fields of
and
perhaps even additional fatigue analysis, into one

multibody dynamics and structural dynamics,

numerical model.

3.3 Numerical Example (1): Large Deformation

and Stress Analysis of a Flexible Beam

In this study, an analysis program for Eq. (14)
including Eq. (17) and Eq. (18) was developed. This was
then used to calculate the large displacement and the
dynamic stress of a cantilever beam with respect to time.
The reliability of this program was compared to the real
experimental result in a reference *' for verification. Fig.
4 shows the simulation model and Table 1 presents the
data used in the simulation.

Large Deformable Beam (FB)

e I B,
1 N2 N3 N4 NS N6
+—1 —t—
El E2 E3 E4 E5 E
Ei =6.7Cm -
Ground Rigid Body (RB)
| . |
' L=40.2Cm '

Fig. 4 Simulation model for calculating the large

displacement of flexible beam

Table 1 Simulation model data (1)

Body Data Hl 1

Total Length: 0.402 M
Beam Elements: 6
(Circular Section)

Total Mass (kg): 0.0025
Diameter (mm): 1

Cross Area(m’); 785.4% 107
1(m"): 4.909x107"

E (GPa): 200.0

a=0.02

B = 0.0 (not considered)

FB
(Beam)

Very
Flexible

Mass (kg): 0.02

RB Tnertia (kg m°): 1.58x107°

Rigid

Ground Fix

A rigid body was attached at the beams’s end-point
N7 using a fixed joint. For a more accurate analysis, the
beam’s structural damping was considered using Eq. (11)
Damping coefficient data o, p are same as the reference.
In addition, the longitudinal deformation will be ignored,
so Eq. (17) may be used. The calculation position of the
dynamic stress is at the midpoint of E1 and the surface
(y=0.5mm).

Fig. 5 shows the large deformable behavior of a
beam related to time.

0.05 T —
08 3 0 sec
-0.05F
-0.11 E
0.16 sec

-0.15F

Y -Position (M)

0.2}
o> 0.24 sec

© 0.32 sec

N i 0.4Jsec
0 0.05 0.1 0.15

—_—

02 025 03 035 04 045
X-Position (M)

Fig. 5 Large deformation behavior of flexible beam

Fig. 6
displacement of node N7, compared with the results by

shows the changes of Y-direction
the experiment and the commercial FEA program
NASTRAN (Nonlinear Transient Response Analysis '°).
As shown in the figure, the analysis result by the

presented method is very similar to the experiment data.
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o [ NASTRAN

~~ Experiment
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*‘s\ —= Presented Method f’“’\j
L \ ::.:

n (M)

Y-Pos

-0.25¢

-0.3

035 0.2 0.4 06 0.8 1
Time (sec)

Fig. 6 Analysis result of large displacement

Fig. 7 shows the analysis results of dynamic stress by
the presented method and NASTRAN. As shown in the
figure, the maximum stresses were similar, but there was
a’slight difference in phase and magnitude. This may be
the result of a difference in displacement. And we
assumed that this was caused by the characteristics of the
time increment method or eclement properties used in
NASTRAN. )

10

Dynamic Stress (Pa)
E

—— Presented Method

0 02 04 06 0.8 1
Time (sec)

Fig. 7 Analysis result of dynamic stress

Stress (Pa)

2

Time (se2)

% 04 ¢

Fig. 8 Stress distribution along beam length depending
on time

Fig. 8 shows the dynamic stress distribution along its
length depending on time when 6 beam elements are
used in presented method.

This study may be applied to improve the reliability
of many mechanical systems, such as robot’s electric
harness and very flexible space structures, by calculating
the dynamic stress during multibody dynamic simulation.

4, System Equations of Motion Including
Sliding Constraints

In this chapter, we derived the generalized system
dynamic equations of motion that can analyze a more
complex system which includes a constraint equation for
the sliding joint between a large deformable beam and a
rigid multibody. Using this equation, we can
simultaneously analyze the behaviors of a large fleixble

cable and a multibody system.

4.1 Constraint Equations of a Sliding Joint

Fig. 9 shows the concept of the sliding joint when the
multibody system, which is a rigid body, moves along a
flexible cable, and to model this, a non-generalized
coordinate # is introduced. The non-generalized
coordinate is in a coordinate system that does not relate

to mass and external force.

Element i-1
-0
Cable

Rigid Body 2

Rigid Body ...

Fig. 9 Multibody system moving along a cable

The constraint equation of the sliding joint can be
defined as Eq. (19) using Eq. (1). In other words, the
constraint equation can be defined by making the
position of point p, which was defined using rigid body
coordinates (x-y), the same as the absolute position
defined from the arbitrary beam elements that compose
the cable.
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D(re,ni)=y -y =0

. . R (19)
=S (x=n)eB)—p =0

Here, r"=[rf,r;] =r.+As and A is the

transformation matrix of the rigid body reference frame
(x-p) for the global reference frame (X-Y). 8 =[s,,s,]

is the displacement of the point p defined from the rigid
body reference frame, and it is always constant. r pi is

the global displacement of the p point defined from the
beam element i, and it changes depending on the non-
generalized coordinate n.

When r, does not change due to the constant

value of n in Eq. (19), it becomes a constraint equation
for the fixed joint that can define the knot of the
multibody system and cable. When Eq. (19) is extended,
it can be expressed as two constraint equations for x and
y directions as Eq. (20).

O = e'(l—— 2a" e —Z%Jrﬂ)
. 3n? 2n .onon
&) ta T )
10 20)
i i n 2n’ . wmt
DY = e (I-—+=)+€, (n——l—+7z—)
C 3t o’ .onton
+es(—lz——‘l3—) +es(—7+l—z)
-rf=0

Y

Using the constraint equation coupled on the rigid
body coordinates and absolute nodal coordinates of Eq.
(20), the Jacobian matrix and the right-hand side of
acceleration of the sliding joint can be calculated. The
calculation results are arranged in the appendix. The
friction on the sliding joint was not considered in this
study.

4.2 System Equations of Metion Including
Sliding Constraints
To consider the dynamic interaction between a rigid
multibody and a flexible cable, a new system coordinates
q=[r

body coordinates and the nongeneralized coordiante

" ", n]" is introduced that include both the rigid

which are used, respectively, to define the multibody
system and the sliding joint. Therefore, the constraint
equation of Eq. (12) becomes ®(r,e,n,r)=0 and it
includes the constraint equation of the sliding joint to
implement the dynamic interaction of the multibody
system and the flexible beam. The mass matrix is
redefined, so Eq. (14) can be used as the final equations
for the analysis of the interaction of the flexible beam
and the multibody system as Eq. (21).

M 0 0 @[] [

0 M0 @ | ¢ “
H%1=|@ @)

00 0 @il |0

oo @0 |[* |7

Here, @, is the Jacobian matrix for the non-generalized

coordinate. Eq. (21) is also a differential algebraic

equation.

E
—{

inltiat condiions
Gt =0), Golt=0), ¥(gb, )

Flag =0, At Ay, M7, M

At =107
At, =107°

Update Equaimns ¥y
Force s @7, Q°

Jacobian 1 ®@,,®,, P,
R-H-$: y

Tam porary Array S=¥

SBolve Linear Equation (21}
¥ (q 24

3

ot A [
k=hk+1 {

integration usmg 4th R-K
Method #2123

k+l k
Y ¥ Y,

Yes {nodal point)

» Flag =0, n=1
- B, Jacobian Index update
- At = A

Fig. 10 Numerical algorithm
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Fig. 10 shows the concept that allows the connection
point (nodal point) to avoid the discontinuouity problem
by reconstructing the Jacobian matrix when the sliding
joint moves from element i to element i-1. For this, there
should be an algorithm that can determine the moment
when the integrator for the analysis of Eq. (21) passes the
nodal point. Using the integration method of 4-th Runge-
Kautta, the study determined the beam element i-1 where
the sliding joint moves in the integration step where
n' <0, and developed a program that can advance the
analysis of the system by reconstructing the Jacobian
matrix for the generalized coordinates of the beam
element.

4.3 Numerical Example (2): Analysis of a
Flexible Catenary Cable Carrying a Moving

Multibody System
Fig. 11 shows a model for the numerical example of

this study. Table 2 shows the material properties of the
cable and multibody system.

Ground'

Fig. 11 Simulation model

Table 2 Simulation model data (2)

Body Data vl 51

Total Length: 4.02 M
Beam Elements: 12, 18, 24
(Circular Section)

Total Mass ( kg ): 0.148
Diameter (mm): 3

CrossArea (m*):7.068 x 10~
I(m*): 7.952x107

E (GPa): 200.0

a=0.01
$ = 0.0 (not considered)

Very

Cable Flexible

Mass (kg ): 2.67
. 5 Rigid
Inertia (kg -m©): 0.2242

The cable was modeled using 12, 18, and 24 beam
elements, respectively, and each model was analyzed.
The values of structural damping coefficient o, and B are
assumed by the reference 2.

Fig. 12
multibody when the simulation was executed using 24

shows the behavior of the cable and

beam elements in the model. As shown in this result, the
large deformation phenomenon of the cable was well
realized by the presented method.

Y-Position (M)

X-Position (M)

Fig. 12 Behaviors of cable and multibody

Fig. 13 shows the path of point 1 where the number
of beam elements that compose the cable was modified.
In the case of using 12 beam elements, it was insufficient
to present the large deformable motion of the cable,
where the sliding joint was located in the largest
deformable area (approximately, after 1.3sec). However,
in using more than 18 beam elements, we concluded that
it was adequate to analyze the large deformable behavior
of the cable.

0 T T T T !
— Element 24
-0.5p == Element 18 -
------- Element 12

Y-Position (M)

X-Position (M)
Fig. 13 Trajectory of point 1
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In cable problem, if the dynamic stress is calculated by
Eq. (18), the value f in Eq. (16) must be calculated in
consideration to the longitudinal deformation.

5. Conclusions

In this paper, the equations of motion that can
analyze the dynamic interaction of a very flexible beam
and a multibody system were derived. Using the derived
equations, a method for calculating the dynamic stress of
a large deformable beam was proposed, and its reliability
was verified through comparison with the results from
experiments and the commercial program NASTRAN.
This is significant in that it brings up the possibility of
merging the two fields of multibody dynamics and
structural dynamics, and perhaps even additional fatigue
analysis, into one numerical model.

In addition, the study developed a sliding joint where
the multibody system can move along the very flexible
cable. In the future, there should be studies that consider
friction and the development of a driver that can operate
the sliding joint under the constraint condition of time. In
addition, the methods of the study should be applied to
an actual system, and their efficiency and reliability need
to be verified through real experiments.

This study can be applied to various multibody
systems that include large deformable problems of beams,
which were hard to analyze. In other words, it can be
applied to actual mechanical fields such as ski lifts, cable
cars, the pantograph and catenary of high-speed trains,
pulley systems, and marine hoist cables.
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APPENDIX

A.1 Jacobian Matrix for a Sliding Joint
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A.2 Right Hand Side of Acceleration for a Sliding Joint
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