• Title/Summary/Keyword: Eigen Problem

Search Result 97, Processing Time 0.031 seconds

Experimental Study for Ultimate Behavior of Steel Cable Stayed Bridge Under Construction (실험을 통한 시공 중 강사장교의 극한거동 연구)

  • Lee, Kee Sei;Kim, Seung Jun;Choi, Jun Ho;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.683-692
    • /
    • 2012
  • The girders of cable stayed bridge are subjected to not only the bending moments but also additional compressive axial forces due to the horizontal components of cable forces. Because of these axial forces, the stiffness of girder can be decreased, and this problem should be considered especially for under-construction model rather than the full model. Korean domestic design specification suggests the linear elastic eigen value analysis for the stability problem of cable stayed bridges. However, this method cannot be applied to the under construction model because various geometric nonlinear characteristics cannot be considered. Therefore, in this study, 3 models which are assumed to be constructed by balanced cantilever will be considered experimentally and analytically to analyze the behavior of steel cable stayed bridges.

Study on the Structural System Condensation Using Multi-level Sub-structuring Scheme in Large-scale Problems (대형 시스템에서의 다단계 부분구조 기법을 이용한 시스템 축소기법에 관한 연구)

  • Baek, Sung-Min;Cho, Maeng-Hyo;Kim, Hyun-Gi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.281-285
    • /
    • 2008
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the previous study, we proposed a two-level condensation scheme (TLCS) for the construction of a reduced system. And we have improved previous TLCS with combination of the iterated improved reduced system method (IIRS) to increase accuracy of the higher modes intermediate range. In this study, we apply previous improved TLCS to multi-level sub-structuring scheme. In the first step, the global system is recursively partitioned into a hierarchy of sub-domain. In second step, each uncoupled sub-domain is condensed by the improved TLCS. After assembly process of each reduced sub-eigenvalue problem, eigen-solution is calculated by Lanczos method (ARPACK). Finally, Numerical examples demonstrate performance of proposed method.

A Novel Compressed Sensing Technique for Traffic Matrix Estimation of Software Defined Cloud Networks

  • Qazi, Sameer;Atif, Syed Muhammad;Kadri, Muhammad Bilal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4678-4702
    • /
    • 2018
  • Traffic Matrix estimation has always caught attention from researchers for better network management and future planning. With the advent of high traffic loads due to Cloud Computing platforms and Software Defined Networking based tunable routing and traffic management algorithms on the Internet, it is more necessary as ever to be able to predict current and future traffic volumes on the network. For large networks such origin-destination traffic prediction problem takes the form of a large under- constrained and under-determined system of equations with a dynamic measurement matrix. Previously, the researchers had relied on the assumption that the measurement (routing) matrix is stationary due to which the schemes are not suitable for modern software defined networks. In this work, we present our Compressed Sensing with Dynamic Model Estimation (CS-DME) architecture suitable for modern software defined networks. Our main contributions are: (1) we formulate an approach in which measurement matrix in the compressed sensing scheme can be accurately and dynamically estimated through a reformulation of the problem based on traffic demands. (2) We show that the problem formulation using a dynamic measurement matrix based on instantaneous traffic demands may be used instead of a stationary binary routing matrix which is more suitable to modern Software Defined Networks that are constantly evolving in terms of routing by inspection of its Eigen Spectrum using two real world datasets. (3) We also show that linking this compressed measurement matrix dynamically with the measured parameters can lead to acceptable estimation of Origin Destination (OD) Traffic flows with marginally poor results with other state-of-art schemes relying on fixed measurement matrices. (4) Furthermore, using this compressed reformulated problem, a new strategy for selection of vantage points for most efficient traffic matrix estimation is also presented through a secondary compression technique based on subset of link measurements. Experimental evaluation of proposed technique using real world datasets Abilene and GEANT shows that the technique is practical to be used in modern software defined networks. Further, the performance of the scheme is compared with recent state of the art techniques proposed in research literature.

A Symbolic Manipulation Computer Program for Structural Analysis (구조해석(構造解析)을 위한 Symbolic Manipulation Program)

  • Shim, Jae Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.95-107
    • /
    • 1983
  • The general purpose programs are in their fixed algorithm and theory of mechanics which can not be altered without painful program modifications. Users are usually guided by user's manual for data input. The several symbolic manipulation programs for structural analysis are introduced recently. These programs allow users to include a wide class of solution algorithm and to specify, by means of some symbolic manipulation, a combination of analytical steps to suit a particular problem. As they can solve a single domain problem, a large computer is usually needed. The scope of this study is to develop an efficient symbolic manipulation program with space beam element, plate bending element and eigen value routines. The incorporated Substructure capability and generation capability of finite element characteristic arrays (e.g., stiffness matrix, mass matrix) enables users to analyse multidomain problem with small computer. The program consists of modulized independent processors, each having its own specific function and is easily modified, eliminated and added. The processors are efficiently handling data by the Data base approach which is the concept of integrated program network(IPN).

  • PDF

On the Solution Method for the Non-uniqueness Problem in Using the Time-domain Acoustic Boundary Element Method (시간 영역 음향 경계요소법에서의 비유일성 문제 해결을 위한 방법에 관하여)

  • Jang, Hae-Won;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.19-28
    • /
    • 2012
  • The time-domain solution from the Kirchhoff integral equation for an exterior problem is not unique at certain eigen-frequencies associated with the fictitious internal modes as happening in frequency-domain analysis. One of the solution methods is the CHIEF (Combined Helmholtz Integral Equation Formulation) approach, which is based on employing additional zero-pressure constraints at some interior points inside the body. Although this method has been widely used in frequency-domain boundary element method due to its simplicity, it was not used in time-domain analysis. In this work, the CHIEF approach is formulated appropriately for time-domain acoustic boundary element method by constraining the unknown surface pressure distribution at the current time, which was obtained by setting the pressure at the interior point to be zero considering the shortest retarded time between boundary nodes and interior point. Sound radiation of a pulsating sphere was used as a test example. By applying the CHIEF method, the low-order fictitious modes could be damped down satisfactorily, thus solving the non-uniqueness problem. However, it was observed that the instability due to high-order fictitious modes, which were beyond the effective frequency, was increased.

Motion Recognitions Based on Local Basis Images Using Independent Component Analysis (독립성분분석을 이용한 국부기저영상 기반 동작인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.617-623
    • /
    • 2008
  • This paper presents a human motion recognition method using both centroid shift and local basis images. The centroid shift based on 1st moment balance technique is applied to get the robust motion images against position or size changes, the extraction of local basis images based on independent component analysis(ICA) is also applied to find a set of statistically independent motion features, which is included in each motions. Especially, ICA of fixed-point(FP) algorithm based on Newton method is used for being quick to extract a local basis images of motions. The proposed method has been applied to the problem for recognizing the 160(1 person * 10 animals * 16 motions) sign language motion images of 240*215 pixels. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate) than the method using local eigen images and the method using local basis images without centroid shift respectively.

Health Education Curriculum Constructs and Dimensional Properties for Korean Middle School Students in Multidimensional Scaling Analysis (다차원척도법을 이용한 중학교 보건교육 교과영역 구축 및 속성 분석)

  • Park, Kyoung-Ok
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.7
    • /
    • pp.1-17
    • /
    • 2006
  • Background: School is a primary health education setting for adolescents and the continuous support should be provided to renew school health education curriculum correspondent to cultural changes in Korean society. Objectives: This study was conducted to identify the principals and teachers' health education needs for their students and to analyze their conceptual map for health education curriculum at school. Methods: The sample size of the preliminary study was 321 of the teachers in elementary, middle, and high school, and that of the main study was 355 middle school principals and teachers over the country. The self-administered mailing survey was conducted to collect the available health education topics in the preliminary study, to identify the factor structure of the health education topics and to analyze the conceptual properties on health education with exploratory factor analysis and multidimensional scaling analysis in SPSS 12.0. Results: A total of 21 health education topics were collected from the preliminary survey and 31 topics were, comprehensively, generated for the main survey. In exploratory factor analysis, seven factors were generated in 1.0 or greater Eigen value standard. The seven factors were 'life health promotion,' 'disease prevention and drug control,' 'bulling and aggression prevention,' 'injury and sexual harassment prevention,' human-efficacy and regulation,' 'health protection for adolescence,' and 'alcohol and tobacco control.' The educational need scores were the highest in 'human-efficacy and regulation' and 'injury and sexual harassment prevention.' The two-dimensional cooperates were generated for the 31 health education topics and the two dimensional properties which divided the conceptual space were 'health-safety' for one and 'public/environmental-individual/personal' for the other. That is, middle school principals and teachers primarily, understand the health education curriculum in the sense of 'health vs. safety' and 'public/environmental vs individual/personal.' Conclusions: Health education curriculum and textbook should be developed based on teachers' needs and conditions for health education in school fields. The field-based health education programs or textbook would make more possible problem-solving health education for youth in real school fields.

  • PDF

Efficient Primary-Ambient Decomposition Algorithm for Audio Upmix (오디오 업믹스를 위한 효율적인 주성분-주변성분 분리 알고리즘)

  • Baek, Yong-Hyun;Jeon, Se-Woon;Lee, Seok-Pil;Park, Young-Cheol
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.924-932
    • /
    • 2012
  • Decomposition of a stereo signal into the primary and ambient components is a key step to the stereo upmix and it is often based on the principal component analysis (PCA). However, major shortcoming of the PCA-based method is that accuracy of the decomposed components is dependent on both the primary-to-ambient power ratio (PAR) and the panning angle. Previously, a modified PCA was suggested to solve the PAR-dependent problem. However, its performance is still dependent on the panning angle of the primary signal. In this paper, we proposed a new PCA-based primary-ambient decomposition algorithm whose performance is not affected by the PAR as well as the panning angle. The proposed algorithm finds scale factors based on a criterion that is set to preserve the powers of the mixed components, so that the original primary and ambient powers are correctly retrieved. Simulation results are presented to show the effectiveness of the proposed algorithm.

Analysis of Dynamic Behavior of Flexible Rectangular Liquid Containers by the Coupled Boundary Element-Finite Element Method (경계요소-유한요소 연계법에 의한 구형 수조구조물의 동적거동 특성해석)

  • Koh, Hyun Moo;Park, Jang Ho;Kim, Jaekwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1033-1042
    • /
    • 1994
  • Dynamic behavior of flexible rectangular liquid containers is analyzed by a two-dimensional coupled boundary element-finite element method. The irrotational motion of inviscid and incompressible ideal fluid is modeled by boundary elements and the motion of structure by finite elements. A singularity free integral formulation is employed for the implementation of boundary element method. Coupling is performed by using compatibility and equilibrium conditions along the interface between the fluid and structure. The fluid-structure interaction effects are reflected into the coupled equation of motion as added fluid mass matrix and sloshing stiffness matrix. By solving the eigen-problem for the coupled equation of motion, natural frequencies and mode shapes of coupled system are obtained. The free surface sloshing motion and hydrodynamic pressure developed in a flexible rectangular container due to horizontal and vertical ground motions are computed in time domain.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures in a HDD (유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석)

  • Han, Jaehyuk;Jang, Gunhee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.251-258
    • /
    • 2005
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings (HDB) in an HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Reynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigen value problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.