DOI QR코드

DOI QR Code

Efficient Primary-Ambient Decomposition Algorithm for Audio Upmix

오디오 업믹스를 위한 효율적인 주성분-주변성분 분리 알고리즘

  • Received : 2012.09.03
  • Accepted : 2012.10.17
  • Published : 2012.11.30

Abstract

Decomposition of a stereo signal into the primary and ambient components is a key step to the stereo upmix and it is often based on the principal component analysis (PCA). However, major shortcoming of the PCA-based method is that accuracy of the decomposed components is dependent on both the primary-to-ambient power ratio (PAR) and the panning angle. Previously, a modified PCA was suggested to solve the PAR-dependent problem. However, its performance is still dependent on the panning angle of the primary signal. In this paper, we proposed a new PCA-based primary-ambient decomposition algorithm whose performance is not affected by the PAR as well as the panning angle. The proposed algorithm finds scale factors based on a criterion that is set to preserve the powers of the mixed components, so that the original primary and ambient powers are correctly retrieved. Simulation results are presented to show the effectiveness of the proposed algorithm.

스테레오 업믹스(Upmix)에서 음원을 주성분(Primary)과 주변성분(Ambient)으로 분리하는 것은 주된 전처리 과정이며 주성분 분석법(Principal Component Analysis - PCA)을 이용한 연구가 진행되고 있다. 그러나 주성분 분석법은 분리 성능이 스테레오 음원이 가지는 주성분과 주변성분의 파워비(Primary Ambient Power Ratio - PAR Ratio) 및 주성분의 패닝 각도에 영향을 받는 다는 단점이 있다. 이전 연구에 따르면 PAR에 따른 단점을 극복하기 위한 변형된 주성분 분석법(Modified PCA) 방법이 제안되었으나 여전히 패닝 각도에 대한 단점은 극복하지 못하였다. 본 논문에서는 PAR 및 패닝 각도에 영향을 받지 않는 새로운 주성분 분석법 기반의 알고리즘을 제안하였다. 제안된 알고리즘은 스테레오 음원의 파워를 보존하는 기준을 두고 고유치의 비를 이용한 적절한 스케일 값을 통해 문제를 해결하였다. 제안된 알고리즘은 실험결과 PAR 및 주성분의 패닝 각도에 영향을 받지 않고 정확한 분리 성능을 보여줌을 확인하였다.

Keywords

References

  1. R. Dressler, "Dolby Surround Prologic II de-coder principles of operation," Tech. Rep. Dolby Laboratories, 2000
  2. Pulkki, Ville. "Virtual Sound Source Positioning Using Vector Base Amplitude Panning", AES convention. vol 45, Issue 6, pp 456-466, 1997
  3. J. Usher and J. Benesty, "Enhancement of spatial sound quality: A new reverberation-extraction audio upmixer," IEEE Trans. Audio, Speech, and Language Processing, vol. 15, no. 7, pp. 2141-2150, 2007 https://doi.org/10.1109/TASL.2007.901832
  4. C. Faller, "Multiple-loudspeaker playback of stereo signals," J. AES, vol. 54, no.11, pp. 1051-1064, 2006.
  5. S.W. Jeon, Y.C. Park, S.P. Lee, D.H. Yoon, "Robust Representation of Spatial Sound in Stereo-to Multichannel Upmix", AES convention, 2010
  6. Goodwin. M.M., "Geometric Signal Decompositions for Spatial Audio Enhancement", IEEE ICASSP conf, pp 409-412, 2008
  7. E. Zwicker, E. Terhardt, "Analytical Expressions for Critical-Band rate and Critical Bandwidth as a Function of Frequency", ASOA, Vol 68, pp 1523-1525, 1980 https://doi.org/10.1121/1.385079
  8. Briand, Manuel, Martin, Nadine, Virette, David, "Parametric Representation of Multichannel Audio Based on Principal Component Analysis", AES convention, 2006

Cited by

  1. Linear Estimation Based Primary-Ambient Extraction for Stereo Audio Signals vol.22, pp.2, 2014, https://doi.org/10.1109/TASLP.2013.2297015
  2. Stereo upmix-based binaural auralization for mobile devices vol.60, pp.3, 2014, https://doi.org/10.1109/TCE.2014.6937325
  3. Location Estimation of Predominant Sound Source with Embedded Source Separation in Amplitude-Panned Stereo Signal vol.22, pp.10, 2015, https://doi.org/10.1109/LSP.2015.2424991
  4. Primary-Ambient Extraction Using Ambient Phase Estimation with a Sparsity Constraint vol.22, pp.8, 2015, https://doi.org/10.1109/LSP.2014.2387021
  5. Time-Shifting Based Primary-Ambient Extraction for Spatial Audio Reproduction vol.23, pp.10, 2015, https://doi.org/10.1109/TASLP.2015.2439577
  6. Primary-Ambient Extraction Using Ambient Spectrum Estimation for Immersive Spatial Audio Reproduction vol.23, pp.9, 2015, https://doi.org/10.1109/TASLP.2015.2434272