• Title/Summary/Keyword: Edge-Labeled Graph

Search Result 26, Processing Time 0.035 seconds

GROUP S3 MEAN CORDIAL LABELING FOR STAR RELATED GRAPHS

  • A. LOURDUSAMY;E. VERONISHA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.321-330
    • /
    • 2023
  • Let G = (V, E) be a graph. Consider the group S3. Let g : V (G) → S3 be a function. For each edge xy assign the label 1 if ${\lceil}{\frac{o(g(x))+o(g(y))}{2}}{\rceil}$ is odd or 0 otherwise. g is a group S3 mean cordial labeling if |vg(i) - vg(j)| ≤ 1 and |eg(0) - eg(1)| ≤ 1, where vg(i) and eg(y)denote the number of vertices labeled with an element i and number of edges labeled with y (y = 0, 1). The graph G with group S3 mean cordial labeling is called group S3 mean cordial graph. In this paper, we discuss group S3 mean cordial labeling for star related graphs.

POWER CORDIAL GRAPHS

  • C.M. BARASARA;Y.B. THAKKAR
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.445-456
    • /
    • 2024
  • A power cordial labeling of a graph G = (V (G), E(G)) is a bijection f : V (G) → {1, 2, ..., |V (G)|} such that an edge e = uv is assigned the label 1 if f(u) = (f(v))n or f(v) = (f(u))n, for some n ∈ ℕ ∪ {0} {0} and the label 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In this paper, we study power cordial labeling and investigate power cordial labeling for some standard graph families.

PAIR MEAN CORDIAL LABELING OF GRAPHS OBTAINED FROM PATH AND CYCLE

  • PONRAJ, R.;PRABHU, S.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.85-97
    • /
    • 2022
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}\;=\;\{\array{{\frac{p}{2}}&p\text{ is even}\\{\frac{p-1}{2}}\;&p\text{ is odd,}}$$ and M = {±1, ±2, ⋯ ± 𝜌} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{{\lambda}(u)+{\lambda}(v)}{2}$ if λ(u) + λ(v) is even and $\frac{{\lambda}(u)+{\lambda}(v)+1}{2}$ if λ(u) + λ(v) is odd such that ${\mid}\bar{\mathbb{S}}_{{\lambda}_1}-\bar{\mathbb{S}}_{{\lambda}^c_1}{\mid}{\leq}1$ where $\bar{\mathbb{S}}_{{\lambda}_1}$ and $\bar{\mathbb{S}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G for which there exists a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling of graphs which are obtained from path and cycle.

DIFFERENCE CORDIALITY OF SOME SNAKE GRAPHS

  • Ponraj, R.;Narayanan, S. Sathish
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.377-387
    • /
    • 2014
  • Let G be a (p, q) graph. Let f be a map from V (G) to {1, 2, ${\ldots}$, p}. For each edge uv, assign the label ${\mid}f(u)-f(\nu){\mid}$. f is called a difference cordial labeling if f is a one to one map and ${\mid}e_f(0)-e_f(1){\mid}{\leq}1$ where $e_f(1)$ and $e_f(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with admits a difference cordial labeling is called a difference cordial graph. In this paper, we investigate the difference cordial labeling behavior of triangular snake, Quadrilateral snake, double triangular snake, double quadrilateral snake and alternate snakes.

PAIR MEAN CORDIAL LABELING OF SOME UNION OF GRAPHS

  • R. PONRAJ;S. PRABHU
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.55-69
    • /
    • 2024
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}=\{\array{{\frac{p}{2}} && p\;\text{is even} \\ {\frac{p-1}{2}} && p\;\text{is odd,}}$$ and M = {±1, ±2, … ± 𝜌} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{{\lambda}(u)+{\lambda}(v)}{2}$ if λ(u) + λ(v) is even and $\frac{{\lambda}(u)+{\lambda}(v)+1}{2}$ if λ(u) + λ(v) is odd such that ${\mid}\bar{\mathbb{s}}_{{\lambda}_1}-\bar{\mathbb{s}}_{{\lambda}^c_1}{\mid}\,{\leq}\,1$ where $\bar{\mathbb{s}}_{{\lambda}_1}$ and $\bar{\mathbb{s}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G with a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of some union of graphs.

GROUP S3 CORDIAL REMAINDER LABELING OF SUBDIVISION OF GRAPHS

  • LOURDUSAMY, A.;WENCY, S. JENIFER;PATRICK, F.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.3_4
    • /
    • pp.221-238
    • /
    • 2020
  • Let G = (V (G), E(G)) be a graph and let g : V (G) → S3 be a function. For each edge xy assign the label r where r is the remainder when o(g(x)) is divided by o(g(y)) or o(g(y)) is divided by o(g(x)) according as o(g(x)) ≥ o(g(y)) or o(g(y)) ≥ o(g(x)). The function g is called a group S3 cordial remainder labeling of G if |vg(i)-vg(j)| ≤ 1 and |eg(1)-eg(0)| ≤ 1, where vg(j) denotes the number of vertices labeled with j and eg(i) denotes the number of edges labeled with i (i = 0, 1). A graph G which admits a group S3 cordial remainder labeling is called a group S3 cordial remainder graph. In this paper, we prove that subdivision of graphs admit a group S3 cordial remainder labeling.

4-TOTAL DIFFERENCE CORDIAL LABELING OF SOME SPECIAL GRAPHS

  • PONRAJ, R.;PHILIP, S. YESU DOSS;KALA, R.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.1_2
    • /
    • pp.51-61
    • /
    • 2022
  • Let G be a graph. Let f : V (G) → {0, 1, 2, …, k-1} be a map where k ∈ ℕ and k > 1. For each edge uv, assign the label |f(u) - f(v)|. f is called k-total difference cordial labeling of G if |tdf (i) - tdf (j) | ≤ 1, i, j ∈ {0, 1, 2, …, k - 1} where tdf (x) denotes the total number of vertices and the edges labeled with x. A graph with admits a k-total difference cordial labeling is called k-total difference cordial graphs. In this paper we investigate the 4-total difference cordial labeling behaviour of shell butterfly graph, Lilly graph, Shackle graphs etc..

A NOTE ON VERTEX PAIR SUM k-ZERO RING LABELING

  • ANTONY SANOJ JEROME;K.R. SANTHOSH KUMAR;T.J. RAJESH KUMAR
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.367-377
    • /
    • 2024
  • Let G = (V, E) be a graph with p-vertices and q-edges and let R be a finite zero ring of order n. An injective function f : V (G) → {r1, r2, , rk}, where ri ∈ R is called vertex pair sum k-zero ring labeling, if it is possible to label the vertices x ∈ V with distinct labels from R such that each edge e = uv is labeled with f(e = uv) = [f(u) + f(v)] (mod n) and the edge labels are distinct. A graph admits such labeling is called vertex pair sum k-zero ring graph. The minimum value of positive integer k for a graph G which admits a vertex pair sum k-zero ring labeling is called the vertex pair sum k-zero ring index denoted by 𝜓pz(G). In this paper, we defined the vertex pair sum k-zero ring labeling and applied to some graphs.

PAIR DIFFERENCE CORDIAL LABELING OF PETERSEN GRAPHS P(n, k)

  • R. PONRAJ;A. GAYATHRI;S. SOMASUNDARAM
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.1_2
    • /
    • pp.41-53
    • /
    • 2023
  • Let G = (V, E) be a (p, q) graph. Define $${\rho}=\{{\frac{2}{p}},\;{\text{{\qquad} if p is even}}\\{\frac{2}{p-1}},\;{{\text{if p is odd}}$$ and L = {±1, ±2, ±3, … , ±ρ} called the set of labels. Consider a mapping f : V ⟶ L by assigning different labels in L to the different elements of V when p is even and different labels in L to p-1 elements of V and repeating a label for the remaining one vertex when p is odd.The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that ${\mid}{\Delta}_{f_1}-{\Delta}_{f^c_1}{\mid}{\leq}1$, where ${\Delta}_{f_1}$ and ${\Delta}_{f^c_1}$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate pair difference cordial labeling behaviour of Petersen graphs P(n, k) like P(n, 2), P(n, 3), P(n, 4).

PAIR DIFFERENCE CORDIALITY OF CERTAIN SUBDIVISION GRAPHS

  • R. PONRAJ;A. GAYATHRI;S. SOMASUNDARAM
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Let G = (V, E) be a (p, q) graph. Define $$\begin{cases}\frac{p}{2},\:if\:p\:is\:even\\\frac{p-1}{2},\:if\:p\:is\:odd\end{cases}$$ and L = {±1, ±2, ±3, ···, ±ρ} called the set of labels. Consider a mapping f : V → L by assigning different labels in L to the different elements of V when p is even and different labels in L to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd.The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that |Δf1 - Δfc1| ≤ 1, where Δf1 and Δfc1 respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate the pair difference cordial labeling behavior of subdivision of some graphs.