• Title/Summary/Keyword: E-simulator

Search Result 382, Processing Time 0.029 seconds

Atmospheric Turbulence Simulator for Adaptive Optics Evaluation on an Optical Test Bench

  • Lee, Jun Ho;Shin, Sunmy;Park, Gyu Nam;Rhee, Hyug-Gyo;Yang, Ho-Soon
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • An adaptive optics system can be simulated or analyzed to predict its closed-loop performance. However, this type of prediction based on various assumptions can occasionally produce outcomes which are far from actual experience. Thus, every adaptive optics system is desired to be tested in a closed loop on an optical test bench before its application to a telescope. In the close-loop test bench, we need an atmospheric simulator that simulates atmospheric disturbances, mostly in phase, in terms of spatial and temporal behavior. We report the development of an atmospheric turbulence simulator consisting of two point sources, a commercially available deformable mirror with a $12{\times}12$ actuator array, and two random phase plates. The simulator generates an atmospherically distorted single or binary star with varying stellar magnitudes and angular separations. We conduct a simulation of a binary star by optically combining two point sources mounted on independent precision stages. The light intensity of each source (an LED with a pin hole) is adjustable to the corresponding stellar magnitude, while its angular separation is precisely adjusted by moving the corresponding stage. First, the atmospheric phase disturbance at a single instance, i.e., a phase screen, is generated via a computer simulation based on the thin-layer Kolmogorov atmospheric model and its temporal evolution is predicted based on the frozen flow hypothesis. The deformable mirror is then continuously best-fitted to the time-sequenced phase screens based on the least square method. Similarly, we also implement another simulation by rotating two random phase plates which were manufactured to have atmospheric-disturbance-like residual aberrations. This later method is limited in its ability to simulate atmospheric disturbances, but it is easy and inexpensive to implement. With these two methods, individually or in unison, we can simulate typical atmospheric disturbances observed at the Bohyun Observatory in South Korea, which corresponds to an area from 7 to 15 cm with regard to the Fried parameter at a telescope pupil plane of 500 nm.

Development of Interlocking Signal Simulator for Verification of Naval Warship Engineering Control Logics (함정 통합기관제어체계의 제어로직 검증을 위한 연동신호 시뮬레이터 개발)

  • Lee, Hunseok;Son, Nayoung;Shim, Jaesoon;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1103-1109
    • /
    • 2021
  • ECS is a control device so that the warship can perform the mission stably by controlling and monitoring the entire propulsion system. As the recent provisions of the warship, it's propelling system is complicated than past, as the demand performance and mission of the warships are diverse. In accordance with the complicated propulsion system configuration, the demand for automatic control function of the ECS is increasing for convenient and stable propulsion system control for convenient and stable. As a result, verification of ECS stability and reliability is required. In this paper, we develop an interlocking signal simulator for verifying ECS control logic and communication protocol for warship with CODLOG propulsion systems. The simulator developed was implemented to simulate a signal of gas turbine, propulsion motors, diesel generator and 11 kinds of auxiliary equipment. The reliability of ECS was verified through the ECS communication program and the I/O signal static test with the simulator.

Development of High Performance Massively Parallel Processing Simulator for Semiconductor Etching Process (건식 식각 공정을 위한 초고속 병렬 연산 시뮬레이터 개발)

  • Lee, Jae-Hee;Kwon, Oh-Seob;Ban, Yong-Chan;Won, Tae-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.37-44
    • /
    • 1999
  • This paper report the implementation results of Monte Carlo numerical calculation for ion distributions in plasma dry etching chamber and of the surface evolution simulator using cell removal method for topographical evolution of the surface exposed to etching ion. The energy and angular distributions of ion across the plasma sheath were calculated by MC(Monte Carlo) algorithm. High performance MPP(Massively Parallel Processing) algorithm developed in this paper enables efficient parallel and distributed simulation with an efficiency of more than 95% and speedup of 16 with 16 processors. Parallelization of surface evolution simulator based on cell removal method reduces simulation time dramatically to 15 minutes and increases capability of simulation required enormous memory size of 600Mb.

  • PDF

Temperature Dependence of Electrical Parameters of Silicon-on-Insulator Triple Gate n-Channel Fin Field Effect Transistor

  • Boukortt, Nour El Islam;Hadri, Baghdad;Caddemi, Alina;Crupi, Giovanni;Patane, Salvatore
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.329-334
    • /
    • 2016
  • In this work, the temperature dependence of electrical parameters of nanoscale SOI (silicon-on-insulator) TG (triple gate) n-FinFET (n-channel Fin field effect transistor) was investigated. Numerical device simulator $ATLAS^{TM}$ was used to construct, examine, and simulate the structure in three dimensions with different models. The drain current, transconductance, threshold voltage, subthreshold swing, leakage current, drain induced barrier lowering, and on/off current ratio were studied in various biasing configurations. The temperature dependence of the main electrical parameters of a SOI TG n-FinFET was analyzed and discussed. Increased temperature led to degraded performance of some basic parameters such as subthreshold swing, transconductance, on-current, and leakage current. These results might be useful for further development of devises to strongly down-scale the manufacturing process.

The Application Technique on AI and Statistical Analysis of 3d-PD (3d-PD의 통계적 고찰과 신경망 응용기술)

  • Lim, Jang-Seob;Park, Yong-Sik;Choi, Byoung-Ha;Han, Sok-Kyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.66-70
    • /
    • 2001
  • The partial discharge testing is widely used in diagnostic measuring technology because it gives low stress to power equipment which is undertaken tests. Therefore it is very useful method compare to previous destructive methods and effective diagnosis method in power system that requires on-line/on-site diagnosis. But partial discharges have very complex characteristics of discharge pattern, so it is required continuous research to development of precise analysis method. In recent, the study of partial discharge is carrying out discover of initial defect of power equipment through condition diagnosis and system development of degradation diagnosis using HFPD(High Frequency Partial Discharge) detection. In this study, simulated system is manufactured and HFPD occurred from those simulator is measured with broad-band antenna in real time, the degradation grade of system is analyzed through produced patterns in simulated target according to the AI/statistics processing.

  • PDF

Enhanced OLSR Routing Protocol Using Link-Break Prediction Mechanism for WSN

  • Jaggi, Sukhleen;Wasson, Er. Vikas
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.259-267
    • /
    • 2016
  • In Wireless Sensor Network, various routing protocols were employed by our Research and Development community to improve the energy efficiency of a network as well as to control the traffic by considering the terms, i.e. Packet delivery rate, the average end-to-end delay, network routing load, average throughput, and total energy consumption. While maintaining network connectivity for a long-term duration, it's necessary that routing protocol must perform in an efficient way. As we discussed Optimized Link State Routing protocol between all of them, we find out that this protocol performs well in the large and dense networks, but with the decrease in network size then scalability of the network decreases. Whenever a link breakage is encountered, OLSR is not able to periodically update its routing table which may create a redundancy problem. To resolve this issue in the OLSR problem of redundancy and predict link breakage, an enhanced protocol, i.e. S-OLSR (More Scalable OLSR) protocol has been proposed. At the end, a comparison among different existing protocols, i.e. DSR, AODV, OLSR with the proposed protocol, i.e. S-OLSR is drawn by using the NS-2 simulator.

A study on the pinch-off characteristics for Double Cate MOSFET in nuo structure (나노 구조 Double Gate MOSFET의 핀치오프특성에 관한 연구)

  • 고석웅;정학기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.1074-1078
    • /
    • 2002
  • In this paper, we designed double gate(DG) MOSFET structure which has main gate(MG) and two side gates(SG). We have simulated using TCAD simulator U .WOSFET have the main gate length of %m and the side gate length of 70nm. Then, u'e have investigated the pinch-off characteristics, drain voltage is changed from 0V to 1.5V at VMG=1.5V and VSG=3.0V. In spite of the LMG is very small, we have obtained a very good pinch-off characteristics. Therefore, we know that the DG structure is very useful at nano scale.

Development and Application of Evacuation and Fatalities Assessment Program (대피 및 인명피해 평가 프로그램 개발 및 적용사례)

  • Yoon, Sung-Wook;Rie, Dong-Ho
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.274-280
    • /
    • 2011
  • Evacuation and Fatalities Simulation is one of the core technologies for performance based design. Recently, developed programs in foreign countries have limitations such as simple fatality calculation and coarse visual interface. This study developed an advanced evaluation program for evacuation and fatalities to overcome limitations of existing programs and improve various applications, i.e., an evacuation algorithm using elevators as well as evacuation stairs. In addition, the evaluation program can let users make a decision of fatalities from fire by coupling with FDS (Fire Dynamics Simulator) from NIST and realizes three-dimensional virtual space using a graphic module.

Analysis of Properties Influencing CO2 Transport Using a Pipeline and Visualization of the Pipeline Connection Network Design: Korean Case Study

  • Lee, Ji-Yong
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • Carbon Capture and Storage (CCS) technologies involve three major stages, i.e., capture, transport, and storage. The transportation stage of CCS technologies has received relatively little attention because the requirements for $CO_2$ transport differ based on the industry-related conditions, geological, and demographical characteristics of each country. In this study, we analyzed the properties of $CO_2$ transport using a pipeline. This study has important implications for ensuring the stability of a long-term CCS as well as the large cost savings, as compared to the small cost ratio as a percentage of the entire CCS system. The state of $CO_2$, network topologies, and node distribution are among the major factors that influence $CO_2$ transport via pipelines. For the analysis of the properties of $CO_2$ transport using a pipeline, the $CO_2$ pipeline connections were visualized by the simulator developed by Lee [11] based on the network topologies in $CO_2$ transport. The case of Korean CCS technologies was applied to the simulation.

A Design and Implementation of the Mobile Communication Simulator with Urban Traffic Characteristics (도시 교통량 특성을 반영한 이동통신 시뮬레이터의 설계 및 구현)

  • Yun, Yeong-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1217-1226
    • /
    • 2000
  • Traditionally, Mobile Teletraffic model consists of two sub-models, i.e. the network traffic model and the traffic source model. In this paper, we present the traffic source model by developing MobCall (Mobile Call Simulator) which analyses various mobile wireless environments based on regional characteristics that the base stations are located. User mobility is presented by regional average vehicle speeds and the transportation share rate. Moreover, the user mobility on subway, which is increasing in urban area, is considered in MobCall. And also, user's movements on highway are considered in MobCall. The object-oriented simulation platform, C++SIM, is used to implement MobCall. Using MobCall, the accumulated number of calls in residential and commercial regions, the handoff rate with respect to traffic sources of Seoul, the handoff rate on highway, and the handoff rate according to the call duration are presented. MobCall enables the simulation of dynamic handoff buffering and functional entity control of one base station according to the changes in user's calling pattern at the design phase. Also, when a new town is under construction by a detailed plan, MobCall is used to design the mobile network with regional characteristics and user mobility considered.

  • PDF