DOI QR코드

DOI QR Code

Temperature Dependence of Electrical Parameters of Silicon-on-Insulator Triple Gate n-Channel Fin Field Effect Transistor

  • Boukortt, Nour El Islam (Department of Electrical Engineering, University of Mostaganem, Dipartimento Di Scienze Matematiche E Informatiche, Scienze Fisiche E Scienze Della Terra, University of Messina) ;
  • Hadri, Baghdad (Department of Electrical Engineering, University of Mostaganem) ;
  • Caddemi, Alina (Department of Engineering, University of Messina) ;
  • Crupi, Giovanni (Department of Engineering, University of Messina) ;
  • Patane, Salvatore (Dipartimento Di Scienze Matematiche E Informatiche, Scienze Fisiche E Scienze Della Terra, University of Messina)
  • Received : 2015.11.17
  • Accepted : 2016.07.12
  • Published : 2016.12.25

Abstract

In this work, the temperature dependence of electrical parameters of nanoscale SOI (silicon-on-insulator) TG (triple gate) n-FinFET (n-channel Fin field effect transistor) was investigated. Numerical device simulator $ATLAS^{TM}$ was used to construct, examine, and simulate the structure in three dimensions with different models. The drain current, transconductance, threshold voltage, subthreshold swing, leakage current, drain induced barrier lowering, and on/off current ratio were studied in various biasing configurations. The temperature dependence of the main electrical parameters of a SOI TG n-FinFET was analyzed and discussed. Increased temperature led to degraded performance of some basic parameters such as subthreshold swing, transconductance, on-current, and leakage current. These results might be useful for further development of devises to strongly down-scale the manufacturing process.

Keywords

References

  1. J. P. Collinge, FinFET and Other Multi-Gate Transistors (Springer, New York, 2008) p. 339. [DOI: http://dx.doi.org/10.1007/978-0-387-71752-4]
  2. N. Boukortt, B. Hadri, A. Caddemi, G. Crupi, and S. Patane, Silicon., 8, 497 (2016). [DOI: http://dx.doi.org/10.1007/s12633-016-9428-6]
  3. X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. Hu, IEEE Trans. Electron Dev., 48, 880 (2001). [DOI: http://dx.doi.org/10.1109/16.918235]
  4. V. Narendar and R. A. Mishra, Superlattice Microst., 85, 357 (2015). [DOI: http://dx.doi.org/10.1016/j.spmi.2015.06.004]
  5. D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor, and C. Hu, IEEE Trans. Electron Dev., 47, 2320 (2000). [DOI: http://dx.doi.org/10.1109/16.887014]
  6. R. Ritzenthaler, F. Lime, O. Faynot, S. Cristoloveanu, and B. Iniguez, Solid-State Electron., 65, 94 (2011). [DOI: http://dx.doi.org/10.1016/j.sse.2011.06.023]
  7. J. P. Raskin, Int. J. Numer. Model., 27, 707 (2013). [DOI: http://dx.doi.org/10.1002/jnm.1950]
  8. A. T. Elthakeb, H. A. Elhamid, and Y. Ismail, IEEE Trans. Electron Dev., 62, 1796 (2015). [DOI: http://dx.doi.org/10.1109/TED.2015.2420580]
  9. D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor, and C. Hu, IEEE Trans. Electron Dev., 47, 2320 (2000). [DOI: http://dx.doi.org/10.1109/16.887014]
  10. R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, IEEE Electron. Device. Lett., 25, 408 (2004). [DOI: http://dx.doi.org/10.1109/LED.2004.828570]
  11. R. P. Ortiz, A. Facchetti, and T. J. Marks, Chem. Rev., 110, 205 (2010). [DOI: http://dx.doi.org/10.1021/cr9001275]
  12. S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, and M. C. Copel, Appl. Phys. Lett., 77, 2710 (2000). [DOI: http://dx.doi.org/10.1063/1.1320464]
  13. N. Boukortt, B. Hadri, and A. Caddemi, IJCA, 138, 10 (2016). [DOI: http://dx.doi.org/10.5120/ijca2016908981]
  14. Santa Clara, Silvaco International Atlas User's Manual Device Simulation Software (Silvaco International, California, 2012).
  15. N. Boukortt, B. Hadri, A. Caddemi, G. Crupi, and S. Patane, Trans. Electr. Electron. Mater., 16, 2 (2015). [DOI: http://dx.doi.org/10.4313/TEEM.2015.16.3.156]
  16. E. Baravelli, L. Marchi, and N. Speciale, Solid-State Electronics., 53, 1303 (2009). [DOI: http://dx.doi.org/10.1016/j.sse.2009.09.015]
  17. V. Narendar and R. A. Mishra, Superlattice Microst., 85, 357 (2015). [DOI: http://dx.doi.org/10.1016/j.spmi.2015.06.004]
  18. W. T. Huang and Y. Li, Nanoscale Res. Lett., 10, 1 (2015). [DOI: http://dx.doi.org/10.1186/1556-276X-10-1]
  19. D. Sharma and S. K. Vishvakarma, Microelectr J., 46, 731 (2015). [DOI: http://dx.doi.org/10.1016/j.mejo.2015.05.008]
  20. W. T. Huang and Y. Li, Nanoscale Res. Lett., 10, 1 (2015). [DOI: http://dx.doi.org/10.1186/1556-276X-10-1]
  21. K. P. Pradhan, Priyanka, Mallikarjunarao, and P. K. Sahu, Superlattice Microst., 90, 191 (2016). [DOI: http://dx.doi.org/10.1016/j.spmi.2015.12.005]
  22. P. Aminzadeh, M. Alavi, and D. Scharfetter, VLSI Symp. Tech. Dig., 178 (1998).
  23. D. S. Jeon and D. E. Burk, IEEE Trans. Electron Dev., 36, 1456 (1989). [DOI: http://dx.doi.org/10.1109/16.30959]
  24. M. Emam, J. C. Tinoco, D. V. Janvier, and J. P. Raskin, Solid-State Electronics., 52, 1924 (2008). [DOI: http://dx.doi.org/10.1016/j.sse.2008.06.058]
  25. K. Kanda, K. Nose, H. Kawaguchi, and T. Sakurai, IEEE J. Solid-State Circuits., 36, 1559 (2001). [DOI: http://dx.doi.org/10.1109/4.953485]
  26. C. W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge, IEEE Trans. Electron Dev., 57, 620 (2010). [DOI: http://dx.doi.org/10.1109/TED.2009.2039093]
  27. K. Akarvardar, A. Mercha, E. Simoen, V. Subramanian, C. Claeys, P. Gentil, and S. Cristoloveanu, Microelectron Reliab., 47, 2065 (2007). [DOI: http://dx.doi.org/10.1016/j.microrel.2006.10.002]