Browse > Article
http://dx.doi.org/10.4313/TEEM.2016.17.6.329

Temperature Dependence of Electrical Parameters of Silicon-on-Insulator Triple Gate n-Channel Fin Field Effect Transistor  

Boukortt, Nour El Islam (Department of Electrical Engineering, University of Mostaganem, Dipartimento Di Scienze Matematiche E Informatiche, Scienze Fisiche E Scienze Della Terra, University of Messina)
Hadri, Baghdad (Department of Electrical Engineering, University of Mostaganem)
Caddemi, Alina (Department of Engineering, University of Messina)
Crupi, Giovanni (Department of Engineering, University of Messina)
Patane, Salvatore (Dipartimento Di Scienze Matematiche E Informatiche, Scienze Fisiche E Scienze Della Terra, University of Messina)
Publication Information
Transactions on Electrical and Electronic Materials / v.17, no.6, 2016 , pp. 329-334 More about this Journal
Abstract
In this work, the temperature dependence of electrical parameters of nanoscale SOI (silicon-on-insulator) TG (triple gate) n-FinFET (n-channel Fin field effect transistor) was investigated. Numerical device simulator $ATLAS^{TM}$ was used to construct, examine, and simulate the structure in three dimensions with different models. The drain current, transconductance, threshold voltage, subthreshold swing, leakage current, drain induced barrier lowering, and on/off current ratio were studied in various biasing configurations. The temperature dependence of the main electrical parameters of a SOI TG n-FinFET was analyzed and discussed. Increased temperature led to degraded performance of some basic parameters such as subthreshold swing, transconductance, on-current, and leakage current. These results might be useful for further development of devises to strongly down-scale the manufacturing process.
Keywords
Nanotechnology; Device scaling; FinFET; Leakage current; Gate length; Silvaco software;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. P. Collinge, FinFET and Other Multi-Gate Transistors (Springer, New York, 2008) p. 339. [DOI: http://dx.doi.org/10.1007/978-0-387-71752-4]
2 N. Boukortt, B. Hadri, A. Caddemi, G. Crupi, and S. Patane, Silicon., 8, 497 (2016). [DOI: http://dx.doi.org/10.1007/s12633-016-9428-6]   DOI
3 X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. Hu, IEEE Trans. Electron Dev., 48, 880 (2001). [DOI: http://dx.doi.org/10.1109/16.918235]   DOI
4 V. Narendar and R. A. Mishra, Superlattice Microst., 85, 357 (2015). [DOI: http://dx.doi.org/10.1016/j.spmi.2015.06.004]   DOI
5 D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor, and C. Hu, IEEE Trans. Electron Dev., 47, 2320 (2000). [DOI: http://dx.doi.org/10.1109/16.887014]   DOI
6 R. Ritzenthaler, F. Lime, O. Faynot, S. Cristoloveanu, and B. Iniguez, Solid-State Electron., 65, 94 (2011). [DOI: http://dx.doi.org/10.1016/j.sse.2011.06.023]
7 J. P. Raskin, Int. J. Numer. Model., 27, 707 (2013). [DOI: http://dx.doi.org/10.1002/jnm.1950]
8 A. T. Elthakeb, H. A. Elhamid, and Y. Ismail, IEEE Trans. Electron Dev., 62, 1796 (2015). [DOI: http://dx.doi.org/10.1109/TED.2015.2420580]   DOI
9 D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor, and C. Hu, IEEE Trans. Electron Dev., 47, 2320 (2000). [DOI: http://dx.doi.org/10.1109/16.887014]   DOI
10 R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, IEEE Electron. Device. Lett., 25, 408 (2004). [DOI: http://dx.doi.org/10.1109/LED.2004.828570]   DOI
11 R. P. Ortiz, A. Facchetti, and T. J. Marks, Chem. Rev., 110, 205 (2010). [DOI: http://dx.doi.org/10.1021/cr9001275]   DOI
12 E. Baravelli, L. Marchi, and N. Speciale, Solid-State Electronics., 53, 1303 (2009). [DOI: http://dx.doi.org/10.1016/j.sse.2009.09.015]   DOI
13 N. Boukortt, B. Hadri, and A. Caddemi, IJCA, 138, 10 (2016). [DOI: http://dx.doi.org/10.5120/ijca2016908981]   DOI
14 Santa Clara, Silvaco International Atlas User's Manual Device Simulation Software (Silvaco International, California, 2012).
15 N. Boukortt, B. Hadri, A. Caddemi, G. Crupi, and S. Patane, Trans. Electr. Electron. Mater., 16, 2 (2015). [DOI: http://dx.doi.org/10.4313/TEEM.2015.16.3.156]
16 V. Narendar and R. A. Mishra, Superlattice Microst., 85, 357 (2015). [DOI: http://dx.doi.org/10.1016/j.spmi.2015.06.004]   DOI
17 W. T. Huang and Y. Li, Nanoscale Res. Lett., 10, 1 (2015). [DOI: http://dx.doi.org/10.1186/1556-276X-10-1]   DOI
18 D. Sharma and S. K. Vishvakarma, Microelectr J., 46, 731 (2015). [DOI: http://dx.doi.org/10.1016/j.mejo.2015.05.008]   DOI
19 W. T. Huang and Y. Li, Nanoscale Res. Lett., 10, 1 (2015). [DOI: http://dx.doi.org/10.1186/1556-276X-10-1]   DOI
20 K. P. Pradhan, Priyanka, Mallikarjunarao, and P. K. Sahu, Superlattice Microst., 90, 191 (2016). [DOI: http://dx.doi.org/10.1016/j.spmi.2015.12.005]   DOI
21 P. Aminzadeh, M. Alavi, and D. Scharfetter, VLSI Symp. Tech. Dig., 178 (1998).
22 K. Kanda, K. Nose, H. Kawaguchi, and T. Sakurai, IEEE J. Solid-State Circuits., 36, 1559 (2001). [DOI: http://dx.doi.org/10.1109/4.953485]   DOI
23 K. Akarvardar, A. Mercha, E. Simoen, V. Subramanian, C. Claeys, P. Gentil, and S. Cristoloveanu, Microelectron Reliab., 47, 2065 (2007). [DOI: http://dx.doi.org/10.1016/j.microrel.2006.10.002]   DOI
24 D. S. Jeon and D. E. Burk, IEEE Trans. Electron Dev., 36, 1456 (1989). [DOI: http://dx.doi.org/10.1109/16.30959]   DOI
25 S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, and M. C. Copel, Appl. Phys. Lett., 77, 2710 (2000). [DOI: http://dx.doi.org/10.1063/1.1320464]   DOI
26 M. Emam, J. C. Tinoco, D. V. Janvier, and J. P. Raskin, Solid-State Electronics., 52, 1924 (2008). [DOI: http://dx.doi.org/10.1016/j.sse.2008.06.058]   DOI
27 C. W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge, IEEE Trans. Electron Dev., 57, 620 (2010). [DOI: http://dx.doi.org/10.1109/TED.2009.2039093]   DOI