In the generally a voice conversion has used VQ(Vector Quantization) for partitioning the spectral feature and has performed by adding an appropriate offset vector to the source speaker's spectral vector. But there is not represented the target speaker's various characteristics because of discrete characteristics of transformed parameter. In this paper, these problems are solved by using the LMR(Linear Multivariate Regression) instead of the mapping codebook which is determined to the relationship of source and target speaker vocal tract characteristics. Also we propose the method for solved the discontinuity which is caused by applying to time aligned parameters using Dynamic Time Warping the time or pitch-scale modified speech. In our proposed algorithm for overcoming the transitional discontinuities, first of all, we don't change time or pitch scale and by using the LMR change a speaker's vocal tract characteristics in speech with non-modified time or pitch. Compared to existed methods based on VQ and LMR, we have much better voice quality in the result of the proposed algorithm.
제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
/
pp.870-876
/
1993
This paper presents a binary clustering network (BCN) and a heuristic algorithm to detect pitch for recognition of keywords in continuous speech. In order to classify nonlinear patterns, BCN separates patterns into binary clusters hierarchically and links same patterns at root level by using the supervised learning and the unsupervised learning. BCN has many desirable properties such as flexibility of dynamic structure, high classification accuracy, short learning time, and short recall time. Pitch Detection algorithm is a heuristic model that can solve the difficulties such as scaling invariance, time warping, time-shift invariance, and redundance. This recognition algorithm has shown recognition rates as high as 95% for speaker-dependent as well as multispeaker-dependent tests.
DTW는 길이가 서로 다른 시퀀스 사이의 간격을 제거하고 패턴의 유사성을 알아낼 수 있지만, 시공간 복잡성 때문에 대규모 데이터셋에서 많은 계산 비용이 필요로 한다. 본 논문에서는 계산 비용을 줄일 뿐만 아니라 결괏값의 오차도 없는 DDTW 알고리즘을 제안한다. 그리고 시퀀스의 길이에 따른 연산 시간을 측정하여 DTW와 DDTW의 알고리즘 복잡도를 비교한다. 시뮬레이션 결과 DTW에 비해 DDTW에서 연산 시간이 눈에 띄게 줄어듦을 확인하였다.
This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, warping restraint, anisotropy of constituent materials, and warping and rotary inertias. The VEM layer damping treatment is modeled by using the Golla-Mushes-McTavish(GHM) method, which is employed to account for the frequency-dependent characteristic o the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.
The speech includes various kinds of information : language information, speaker's information, affectivity, hygienic condition, utterance environment etc. when a person communicates with others. All technologies to utilize in real life processing this speech are called the speech technology. The speech technology contains speaker's information that among them and it includes a speech which is known as a speaker recognition. DTW(Dynamic Time Warping) is the speaker recognition technology that seeks the pattern of standard speech signal and the similarity degree in an inputted speech signal using dynamic programming. ln this study, using TMS320C32 DSP processor, we are to embody this DTW and to construct a security system.
Dynamic Programming Matching(DPM)은 순차적으로 구성된 문제를 수학적으로 최적화 시키는 기술로서 패턴인식 분야에서 다년간 중요한 역할을 해왔다. 서명인식을 위한 대부분의 실제적 적용에서는 Sakoe and Chiba [9]의 실제구현 버전이 기반이 되어 왔는데, 일반적으로 slope constraint p = 0의 방법이 적용되어 왔다. 이 논문에서는 이 경우에는 전진탐색에 의한 휴리스틱한 방법을 적용한 MDPM이 상당한 처리 시간의 단축 뿐만 아니라 약간의 인식능력 향상을 가질 수 있음을 보여준다.
본 논문에서는 Dynamic Space Time Warping(DSTW) 알고리즘을 이용하여 손동작을 다양한 배경에서도 정확하게 인식할 수 있는 방법을 제안한다. DSTW 알고리즘을 이용한 기존의 손동작 인식 방법은 질의영상의 매 프레임 마다 검출된 다수의 손 후보영역을 사용하여 모델영상과 시간 축 상으로 비교하는 방법이다. 그러나 기존의 DSTW 알고리즘을 이용한 손동작 인식 방법은 손을 포함하지 않은 후보영역들(배경, 팔꿈치 등)에 의해 오인식될 수 있는 경로를 생성하며, 그 결과로 사용자가 의도하지 않은 손동작으로 인식될 수 있다. 이러한 단점을 해결하기 위해서, 본 논문에서는 손 후보영역의 불변 모멘트를 이용하여 질감 정보를 추출한 후 후보영역들 사이의 유사도를 비교하였다. 제안한 방법은 유사도를 모델과 질의의 매칭비용에 가중치로 적용하였고, 다양한 실험 결과 제안한 방법이 기존의 방법에 비해 사용자의 손동작을 정확하게 인식하는 것을 확인하였다.
This paper concerns the analytical modeling and dynamic analysis of advanced cantilevered blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias. The case of VEM spreaded over the entire span of the structure is considered. The displayed numerical results provide a comprehensive picture of the synergisitic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.
In this paper, we introduce two retrieval methods for photos with speech documents. We compare the pattern of speech query with those of speech documents recorded in digital cameras, and measure the similarities, and retrieve photos corresponding to the speech documents which have high similarity scores. As the first approach, a phoneme recognition scheme is used as the pre-processor for the pattern matching, and in the second one, the vector quantization (VQ) and the dynamic time warping (DTW) are applied to match the speech query with the documents in signal domain itself. Experimental results show that the performance of the first approach is highly dependent on that of phoneme recognition while the processing time is short. The second method provides a great improvement of performance. While the processing time is longer than that of the first method due to DTW, but we can reduce it by taking approximated methods.
본 논문에서는 다중 시계열 패턴인식 사용하여 생산장치의 상태자료부터 공정결과를 예측하여 정상 또는 비정상을 판정하는 지능형 감시시스템에 관하여 기술한다. 제안하는 감시스템은 초기화, 학습 그리고 인식의 세 단계로 구성된다. 초기화 단계에서는 감시대상의 생산장치가 가지는 인사들 각각의 가중치와 각 인자들이 가지는 시계열 자료 중에서 학습과 인식에 유효단계를 설정한다. 학습단계에서는 LBG알고리즘을 사용하여 이 생산장치에 의하여 생성되고 수집된 패턴들을 군집화 한다. 각 패턴은 시계열 형태의 자료와 처리 완료 후 계측기에 의하여 측정된 ACI로 구성된다. 인식단계에서는 DTW를 사용하여 실시간으로 입력된 패턴과 군집화된 패턴들 사이의 대응을 수행하여 가장 잘 정합되는 패턴을 찾는다. 다음은 이 패턴이 가지는 ACI, 차 그리고 가중치들의 조합으로 예측된 ACI 값을 산출한다. 최종적으로 예측된 ACI가 정상으로 수용할 수 있는 값 범위에 없는지 여부를 결정한다. 제안하는 시스템의 성능평가를 위하여 식각장치로부터 획득된 자료를 대상으로 실험하였다. 실험결과에서는 학습횟수가 증가함에 따라 예측 ACI값과 실측ACI값 사이의 오차가 현저히 감소함을 볼 수 있다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.