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The Modified DTW Method for on-line Automatic Signature Verification

Dong- Uk CHO'- Young- Lae BAE'

ABSTRACT

Dynamic Programming Matching (DPM) is a mathematical optimization technique for sequentially structured problems, which has, over the
vears, played a major role in providing primary algorithms in pattern recognition fields. Most practical applications of this method in signature
verification have been based on the practical implementational version proposed by Sakoe and Chiba [9], and is usually applied' as a case of
lope constraint p = 0. We found, in this case, a modified version of DPM by applying a heuristic (forward seeking) implementation is more
efficient, offering significantly reduced processing complexity as well as slightly improved verification performance.

719JE : Dynamin Time Warping(DTW), M3 QIZ(Signature Verification), T{EI214|(Pattern Recognition)

1. Introduction

Signature verification techniques are generally catego-
rized into two groups depending on the type of features
used for the classification process : functional approaches
and parametric approaches.

In the first group, the trajectory of the signature is con-
sidered as a mathematical time function, #(¢). The func-
tions for both reference signature and test signature are com-
pared for verification by evaluating the similarity (or dis-
similarity) between them.

The main issue for this approach is how to evaluate the
simi arity between them.

Obviously, the straightforward method for this evalua-
tion will be linear correlation. However, this is not valid
for signature verification as the two samples generally have
different signal lengths and non-linear distortion with re—
spect to the time parameter, even if they are produced under
the same environment and by the same writer. Random
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variations exist, which can create portions of signals, de-
letions, additions and gaps due to pauses or hesitations of
the writer [8].

Dynamic Programming Matching (DPM) is a mathemat-
ical optimization technique for sequentially structured prob-
lems, which has, over the years, played a major role in
providing primary algorithms for automatic signature veri-
fication [1,5,9, 11]. In the pattern recognition field, it has
been particularly used to eliminate the timing differences
between two differently originating pattern signals. Hence
it is called as the Dynamic Time Warping (DTW) method
owing to its non-linear time-normalization function.

The DTW method matches two corresponding functions
on the time axis dynamically through compressing or ex-
panding one axis so that the maximum fit is attained with
the other. Most practical applications of this method in
signature verification [7, 10, 12, 14] have been based on the
practical implementational version proposed by Sakoe and
Chiba [9], which is an analytical optimization method unlike
other’s rather heuristic approaches?.

For practical use in signature verification, it is usually
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applied as a case of slope constraint p=0 as, apart from
the fact that this provides the simplest and the fastest
implementation owing to the least constraint (see (Figure
2)), the slope constraint on the warping function has been
noted to be merely time-consuming.

The problem in the DPM application to signature ver-
ification was that many writers have an unstable pattern
of signature writing, which confuses the DTW mechanism.
A different approach from the opposite perspective to in-
vestigate the DTW function is performed by applying a
heuristic (forward seeking) implementation of DTW under
the assumption that the applied patterns satisfy the precon-
ditions for the DTW function, i.e., the patterns have only
a monotonic and continuous shift on the time axis. Thus
a modified version of DPM in this context is developed.

To verify the proposed method, experiments are applied
under the same conditions and using the same data base
to standardize and simplify the test for both conventional
and proposed DTW methods.

The results have proved the proposed method to be effi-
cient, offering significantty reduced processing complexity

as well as slightly improved verification

2. DPM for Signature Verification

2.1 DPM Basics (5,9, 14]
Consider two different signals as sequences of feature
vectors :

A= a, ay a0 a; (1)
B = by, by, =, by, 0, by

These two patterns, A and B, can be depicted in an ¢ —

plane as shown in (Figure 1), where two patterns are repre-
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(Figure 1) DTW mechanism for time alignment

1) Other elastic matching methods include the peak matching technique, a
finite state machine approach and regional correlation

sented along the i-axis and j-axis, respectively, and their

matching stages are by a sequence of points S(k), where
S(k)= (i(k),i(k)).

To normalize these two signals with a N-stage decision
process, a sequence of decision functions can be expressed
as -

N

Dgxy= kz Celqpxr) (2)

=1

where C, is a contribution function at #* stage for the
decision vector ¢, and the state vector x,(a,, &;)

DP matching seeks to find the optimum function D(%, x;)
at the kth stage :

Dz = Optzg:mm (D e=1.xs 0T Ck(llk,xk)] (3)

In the context of the DTW algorithm, this problem of
determining the optimal sequence corresponds to finding a
minimum sequence of warping function F (i ), 7)), Which

is normally composed of two components :
Fo=d (i X WG @

where d; ., is the #* occupancy cost and w, , is the
Cinrdn) ( &k

corresponding weight.

Then the optimal objective function at the %£” stage, D,

is given as :

D, = f;’f:[D,,_l + Fyl ®)

%

The optimal value of this function will be the result of

the sequence of recursive functions :

k
Min & ,Z; dijyX Wiy
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This is expanded as follows.
@ Initial condition :

Dfl=d(.f1)><w(f1) (7)

@ DP-equation :

*

D= YD, +df) % wih)] ®

@ Time-normalized distance :
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where N = é} w(f;)

One of the major important features of the DTW pro-
cessinz is that the £% decision function, F,, does not re-
quire iny decision variables for the previous stages other
than .7,_, :

It on’y depends on the value of F,_; and a number of the
present decision variables, which implies a considerable
compl 2xity reduction for solving the whole optimization pro-
blem o:herwise requiring all possible combinations of every
variatile,

2.2 DPM Implementation

Sakoe and Chiba [9] provided a practical solution for
Equation (6), which originally was proposed for speech rec-
ognit on. Since then, this method has been extended for use
in signature verification and has been widely accepted for
pract cal applications in this field [2, 4,7, 8, 10, 12, 14].

® estrictions on the warping function

To provide a safeguard against unusual deviations dur-
ing t1e warping process and to keep a desirable warping
gradient, two conditions are imposed on the warping func-
tion :

@ Adjustment window (see (Figure 1))
1i(k)—j(k)| - 7 (10)

where » is an adequate value for the window size.

Ttis is to prevent unusual deviations from the warping
func ion, which is based on the assumption that the normal
time -axis fluctuation does not cause an excessive timing
diffe -ence.

@ Slope constraint
An appropriate slope constraint is imposed to keep the
warping gradient from an undesirable time warping (see

Figtre 2).
&) p=1/2 (b) p=0 () p=1 (d) p=2

(Figure 2) DTW slope constraint
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Let the pattern at %" stage, (ix.7:), be a simplified term,

(i, 7), then Equation (9) becomes : 2
(a) p=1/2

Dvj-» + 2dGj-» t dauj-n T dup
Dii-1,j-» + 2dGj-n + dup

D;=Min| Doy -v + 2dp (1D
Di—gj-n t 2d G- + dj-p
Doy j—p + 2d -2y + di-rpy + dap

(® p=0

Dgj-n + dup
Di=Min| Di-1,j-1 + 2d i j (12)
Doy +dap

(©) p=1

Di-1j-» + 2dj-n + dip
Di=Min| D i-1,;-p + 2d i p (13)
Dy + 2d -1y + dip

(d) p=2

D i-z,j~3 + 2d i-1,-0 + 2dG-n + dip
Di=Min| D -y~ + 2d¢j (19
D(io3,j-n + 2di-zj-1) + da—riy + dap

For practical use in signature verification, it is usually
applied as a case of slope constraint p=0 as in Equation
(12) as, apart from the fact that this provides the simplest
and the fastest implementation owing to the least constraint
(see (Figure 2)), the slope constraint on the warping func-
tion has been noted to be merely time-consuming [7]3.

Sakoe and Chiba [9] gave an example of practical imple-
mentation of DTW, which is depicted in (Figure 3). In the
figure, the flow of the DTW solution for Equation (6) is
diagrammed from the initialization according to Equation
{(7) to the time-normalization as in Equation (9). Unlike
Equation (6), which uses variable “4”, for indexing from
the first stage, 1, to the final stage, “K”, this implementation
uses two indices, “i, j”, to iterate “J” times the DP-equ-
ation (8) (see (Figure 1)) for the sequential solution. The

]

ajustment window size is applied as variable “r”.

2) Sakoe gave two types of slope constraint, the symmetric and asymmetric
forms. Here only the former is concerned for convenience sake. No
significant effect has been noted with respect to the types.

3) Only a small constraint may introduce a minor benefit with a relatively
heavy system latency.
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(Figure 3) DTW implementation

2.3 Experimentation

An experiment was performed to investigate how the
nature of signatures affects the performance of DTW. It
was relevant to the issue about the vulnerability of the
DTW mechanism to relatively variable signature patterns.

For this experiment, the data base consists of two con-

trasting types of signature sample groups :

(D Group I has the members who have relatively “stable”
signature patterns.

® Groupll members have relatively “unstable” patterns
in signature writing.

Group I has a membership of 15 writers and Group I 24.
A total of 50 signatures was collected from each member
in five sessions. Each individual donated ten signatures in
each session. Random forgeries, i.e., signatures generated
by others, were used for the forgery samples, on the same
grounds.

To eliminate effects arising from the variation of magni-
tude and orientation, a precise normalization process in the
spatial domain was performed (refer to Section 3.2.3).

The performance in terms of the equal error rate was
measured as a function of the adjustment window size ap~
plying the 7(x,y) function.

(Figure 4) is the DPM performance result from Group
1 and (Figure 5) is from Group 2.
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(Figure 4) Group I DPM result
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(Figureb) Group I1 DPM result

From these results, it has been observed that the nature
of signature samples has a considerable effect on the DTW
performance :

@ For Group 1, in which each member has a stable
signature pattern, DTW has ideally functioned at
zero error rates with smaller window sizes. Increas-
ing the window size over 14% has caused the degra-
dation of the error rate performance.

® For Group 2, in which most members have variable
signature patterns, the DPM performance has been
considerably degraded. The window size of 4% has
recorded the best result at the equal error rate of 9%,
which is slightly better than the results of 1096 with
neighbouring window sizes.

To understand how the nature of signature samples af-
fects the DTW performance, further investigations are

carried out in the following sections.

2.4 Warping Mechanism
To investigate the time warping mechanism, a graphical
illustration of DTW functioning was carried out for each

of the two groups.



Unlike Group 1, in which the DTW functioning for most
membars showed the typical warping trajectory as in (Fig-
ure 1) many members of Group 2 showed a malfunctioned
DTW -rajectory as in (Figure 6).
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(Figure 6) Group II DTW result

It “~as observed that when the time domain fluctuation
excecds a certain imit (in this experiment, it was about
5 % of the whole duration of a signature signal), the time
warping mechanism often loses its correct trajectory, begins
to malfunction and ends up trailing along one boarder of
the djustment window until it finds a possible optimum
point which has a better solution for DP-function (Equation
(8)) “ han the points on the boarder. For Group 2, the fluc-
tuation mostly originates not from a monotonic and con-
tinucus shift on the time axis (the pre-conditions for DTW
[9]) ke to a natural variation during the signature genera-
tion tut from random noise owing to the excessively var-
iable nature of the signature pattern. Once the DTW func-
tion for Group 2 loses the trajectory due to random noise,
it takes longer to correct its trajectory than is the case in
Group lin which the original trajectory can be found in
the 1ear vicinity of the spot where the function is lost.

This implies that, under worst conditions, the DTW func-
tion can become a compensation function which randomly
keeps relaxing the time domain fluctuation according to a
window limit until the situation becomes better, which re-
sults in a random compensation and accordingly degrades
the OTW performance. This malfunctioning in those cases

can be enlarged as the window size increases.

2.5 Discussion
F-om the experiments in the previous sections in this

chapter, the following have been observed :

) Applying precise normalization as preprocessing re-
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sults not only in an error rate performance improve-
ment but also in a smaller optimal window size, which
implies that normalization helps reduce the variation

of a pattern.

In this regard, it is strongly implied that the “time domain
fluctuation” in on-line signature verification originates not
only from the natural variation during signature generation
due to temporal pauses and hesitations of the writer as
usually referred to [8) but also from the attitude variation,
including the change of the relative placement and orien-
tation of the signature, during signature collection in the
context that normalization in this study mainly corrects
such variations. (Figure 7) illustrates an example where the
same pattern in the spatial domain is projected on the time
axis as different patterns owing to an attitude variation.
In the figure, the left hand side is for the spatial domain
where a pattern is differently oriented and the right hand
side is for the time domain where the pattern is projected
as different patterns according to the orientation on the time
axis, T.

Pl

Qo

7

(Figure 7) Time variation from attitude variation

@ Inherently variable patterns which do not satisfy the
preconditions of continuity and monotonicity for DTW
significantly degrade the DTW performance even th-
ough they have been precisely normalized.

® Generally, for the precisely normalized signatures, the
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larger adjustment window over the optimum size ne-
gatively affects the performance.

These observations lead to a further investigation using
the modified DTW, which adopts a forward-seeking strat—
egy, as described in the following section.

3. Development of Modified DPM

The problem in the DPM application to signature ver—
ification in the preceding sections, which applied the im-
plementational version proposed by Sakoe and Sato [9],
was that many writers have an unstable pattern of sig-
nature writing, which confuses the DTW mechanism. In
this section, a different approach from the opposite per-
spective to investigate the DTW function is performed by
applying a heuristic (forward seeking) implementation of
DTW under the assumption that the applied patterns sat-
isfy the preconditions for the DTW function, i.e., the pat-
terns have only a monotonic and continuous shift on the
time axis. Under such ideal conditions, there is little ne-
cessity of DTW functioning for all cases at the preceding
stage (see Equation (8)) as the function is continuously

increasing.

® Algorithm

If the optimal objective function at the k—1" stage,
D j_1, has been correctly selected, and the function satis-
fies the necessary conditions of continuity and monotonic-
ity for DTW [9] and it does not have an abnormal (ex-
cessive) fluctuation? on the time axis,

then Equation (8) can be alternatively expanded as :
D, =D, + MP1a(5) x w(£) GE)
i ey Fy k WAJk

A slope constraint then can be imposed as in (Figure 8)
to maintain a normal time warping gradient, which corre-
sponds to the slope constraint for Sakoe’s version as in

(Figure 2).

b) p=0 () p=1 (d p=2
(Figure 8) MDTW slope constraint

(&) p=1/2

4) This was assumed for DTW mechanism in Sakoe and Chiba [9] and
became the ground for implementing the adjustment window condition.

For the practical application, it is implemented as follows :
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(Figure 9) MDPM implementation



Equation (15) in the modified DPM (MDPM) version,
firstly, has a strong point compared to Equation (8) in the
convetional DPM (CDPM) as it requires only one DTW
process at each decision stage while the conventional one
requires this process as many times as the window size.
Hence, this alternative method can reduce the computational
comp.exity.

(Figgure 9) diagrammatically illustrates the practical im-
plementation of this modified DPM method.

4. Experimentation

To compare the performances of both DPM methods, the
same error rate performance tests were applied to the
modiied DPM (MDPM) for the two groups. (Figure 10)
is the result for Group 1and (Figure 11) is for Group 2.
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(Figure 10) Group I MDPM result
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(Figure 11) Group II MDPM result

For both of the two groups, the modified DPM (MDPM)
method has shown an equal or better performance com-
pared to the conventional DPM (CDPM) method with small-
er window sizes while it has a considerably degraded per-
forriance with larger window sizes.

For Group 1, MDPM as well as CDPM has recorded a
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zero error rate : for stable signature patterns, MDPM
performs well as CDPM does. But its performance becomes
degraded as the window size increases.

For Group 2, the best performance has been recorded by
MDPM with the window size of 4 percent : for unstable pa—
tterns, MDPM has a slightly better performance than CDPM
with smaller window sizes.

As for CDPM, the original data, the position function
F(x, ¥), has the best result and the second time derivative
of the position signal, the acceleration function, has the
worst performance, which corresponds with the previous
assumption for CDPM that the derivative loses the infor-
mation included in the original signal as the derivation
process is repeated, which consequently causes the perfor-
mance degradation.

Through all experiments, MDPM has shown equal or
better performance than CDPM. The observations on the
verification performance with regard to relevant parame-
ters all correspond with those for CDPM.

5. Conclusion

During the experiments for CDPM, it was observed that
applying precise normalization such as preprocessing re-
sults in both an improvement in error rate performance and
a smaller optimal window size. Accordingly, it was thought
that the time domain fluctuation can also originate from
the attitude variation during signature collection as the
normalization process mainly reduces this geometrical var-
iation.

The results from the for MDPM, which has been pro-
posed for stable patterns satisfying the preconditions for
DPM, applied under the same conditions as for CDPM, have
also confirmed these implications as all the results have
corresponded to the previous results for CDPM. Some re-
sults have even emphasized the assumed trends, e.g., if
normalization is more precisely carried out, the optimal
window size is reduced.

At this stage, it is worth recalling that the principal func-
tion of DPM is to eliminate the timing differences between
two differently originating pattern signals.

The previous experiments have suggested three major
factors which cause the timing differences :

@ The temporal variations during signature generation
due to temporal pauses and hesitations of the writer.
@ The geometrical variations due to attitude variations



458 ZEXe|E =2 B M10-B A4=2(20038)

during signature collection including the change of
the relative placement and orientation of the signa-
ture.

@ The random variations which do not satisfy the pre-

conditions of continuity and monotonicity for DTW.
The results from the experiments have shown that :

@ The temporal variations are ideally applied to DTW.
Patterns which are affected only by these variations
produce a good DTW result (See the experimental
results for Group 1).

(2) The geometrical variations due to attitude change
can be removed by using precise normalization, which
correspondingly improves the error rate performance.

@ The random variations cannot be corrected. Patterns
which are severely affected by these variations pro-
duce the worst DTW results (See the experimental
results for Group 2). Their influence can be min-
imized by reducing the adjustment window size.
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