Diffusive DTW Algorithm for Optimizing Distance Matrix Computation Structure

거리 행렬 연산 구조 최적화를 위한 확산 동적 시간 왜곡(Diffusive DTW) 알고리즘

  • Published : 2022.10.03

Abstract

DTW can eliminate gaps between sequences of different lengths and find out the similarity of patterns, but due to the time and space complexity, it requires a high computational cost on large datasets. In this paper, we propose a DDTW algorithm that not only reduces computational costs but also has no error in the results. In addition, the algorithm complexity of DTW and DDTW is compared by measuring the computational time according to the length of the sequence. Simulation results show a noticeable reduction in computational time in DDTW compared to DTW.

DTW는 길이가 서로 다른 시퀀스 사이의 간격을 제거하고 패턴의 유사성을 알아낼 수 있지만, 시공간 복잡성 때문에 대규모 데이터셋에서 많은 계산 비용이 필요로 한다. 본 논문에서는 계산 비용을 줄일 뿐만 아니라 결괏값의 오차도 없는 DDTW 알고리즘을 제안한다. 그리고 시퀀스의 길이에 따른 연산 시간을 측정하여 DTW와 DDTW의 알고리즘 복잡도를 비교한다. 시뮬레이션 결과 DTW에 비해 DDTW에서 연산 시간이 눈에 띄게 줄어듦을 확인하였다.

Keywords

Acknowledgement

본 연구는 2022년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임 [S3266312]