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Abstract 

This paper concerns the analytical modeling and dynamic analysis of advanced cantilevered blade 
structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. 
Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive 
materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host 
structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical 
features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias. 
The case of VEM spreaded over the entire span of the structure is considered. The displayed numerical results 
provide a comprehensive picture of the synergisitic implications of the application of both techniques, namely, 
the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external 
time-dependent excitations. 

1. INTRODUCTION 

The cantilevered composite thin-walled beam structure 
is the most important structure that can serve as a basic 
model for a number of constructions used in the 
aeronautical and space industries, such as airplane wings, 
helicopter blades, fan blades, robotic manipulator arms 
and space booms.  
For such structures, the development and 

implementation of adequate methodologies aiming at 
controlling their free and forced vibration characteristics 
are likely to contribute to the improvement of their 
performance and avoidance of the occurrence of 
resonance and any dynamic instability. 
One of the possible ways towards achieving such goals 

consists in the implementation of viscoelastic materials 
embedded into the host structure, which increase the 
energy dissipation due to the characteristics of VEM 
which minimize vibrations to improve resiliency. For 

instance, increasing the damping levels in turbo-fan 
blades is of current interest to both NASA and the Air 
Force as a means of making commercial and military 
turbo-fan engines more reliable. Increasing the damping 
capabilities in the beams or blades will improve the 
fatigue life and reduce aeroelastic instability matter. The 
appropriate viscoelastic FEM modeling of VEM will be 
called the GHM(Golla, Hughes, McTavish) and the 
system is analyzed in the time domain. Validation of the 
method is well defined in earlier monographs.[1] 
Although of an evident importance, to the best of 

author’s knowledge, no such studies including vibration 
and dynamic analysis of composite blade embedded 
VEM exposed to external loads can be found in the 
specialized literature. The early works on analyses of 
sandwich structures with a viscoelastic core were done 
by Kerwin[2] , Ross[3] et al., DiTaranto[4], and Mead 
and Markus[5]. They presented the fourth and sixth-
order theories for beams and plates to predict damping 
and handled the cases with arbitrary boundary conditions. 
The governing equations of flexural vibration of 
symmetrical sandwich rectangular plate were presented 
by Mead.[6]. C. Park[7] derived a new technique to 
formulate the finite element model of a sandwich beam 
by using GHM. Composite laminated beams and plates 
with a viscoelastic core were also discussed. Cupial and 
Niziol [8] discussed the three layered composite plate 
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with a viscoelastic core layer and two laminated face 
layers by the first-order shear deformation theory. 

2. FORMULATION OF THE COMPOSITE-VEM  

2.1 Basic Assumption and Kinematics of the 
Modeling and Formulation  
The model of the host structure considered 

encompasses a number of features such as: (a) transverse 
shear, (b) second warping, (c) anisotropy of constituent 
materials, (d) the beam cross-sections feature a 
symmetric biconvex profile. 
The points of the beam cross-sections are identified by 

the global coordinates x, y and z, where z is the spanwise 
coordinate (see Fig. 1) and by a local one, n, s, and z, 
(see Fig. 2) where n and s denote the thicknesswise 
coordinate normal to the beam mid-surface and the 
tangential one along the contour line of the beam cross-
section, respectively. Figure 1 shows the typical 
composite-VEM thin walled blade model that is 
considered in the present analysis.  
 

 
 
Fig. 1 Composite-VEM thin walled blade model 

 
Following coordinates description, and 

 denote the rotations about axes x and y 

respectively, while 

( , )x z tθ

( , )y z tθ

yzγ and xzγ  denote the transverse 
shear in the planes yz and xz respectively and the primes 
denote derivatives with respect to the z-coordinate.  

The primary warping function is expressed as [9]   
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respectively.  Fig. 2 displays the configuration of a 
cross-section of a thin walled beam structure and reveals 
the geometrical meaning of  and as well. ( )a s ( )nr s

 

 
 

Fig 2. Displacement field for the thin walled beam 
 
In accordance with the above assumptions and in order 

to reduce the 3-D problem to an equivalent 1-D, the 
components of the displacement vector are expressed as 
[9] 
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Eqs. (4) and (5) reveal that the kinematic variables, 

, , ,  and 0 ( , )v z t 0 ( , )w z t ( , )x z tθ ( , )y z tθ
( , )z tφ representing three translations in the x, y, z 

directions and three rotations about the x, y, z directions, 
respectively are used to define the displacement 
components, u, v and w.  

Notice that the z - axis is located as to coincide with 
the locus of symmetrical points of the cross-section 
along the wing span. 
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The shear strain 
yzvγ  of VEM layer were derived 

form the kinematic relationships between the constrained 
layer and the base beam by Mead and Markus [10] 
The transverse displacement is assumed to be the same 

for each layer, so that expressions for the kinetic and 
potential energy for the composite thin walled beam with 
embedded VEM treatment can be obtained. This 
assumption is valid as long as a thick constraining layer 
is attached to a thin viscoelastic layer [11].  
. 
2.2 Golla-Hughes-McTavish Damping Modeling 

The Golla-Hughes-McTavish (GHM) modeling 
approach [12] provides an alternative method which 
includes viscoelastic damping effects without the 
restriction of steady-state motion by providing extra 
coordinates. GHM models hysteretic damping by adding 
additional “dissipation coordinates” to the system to 
achieve a linear nonhysteretic model providing the same 
damping properties. The dissipation coordinates are used 
with a standard finite element approach or, as in this 
work, with assumed modes method. The derivation of 
the GHM equations starts with the constitutive relation 
for a one dimensional stress-strain system using the 
theory of linear viscoelasticity [13].  
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t d
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d
σ ε τ ε

τ
= + −∫ τ τ      (6) 

 
where σ  is the stress. It is assumed that the 

strain,ε  is zero for all time less than zero, and G(t) is 
defined as a material relaxation function. The stress 
relaxation function represents the energy loss of the 
material, which is damping.  
Linear second-order matrix form is maintained as well 

as symmetry and definiteness of the augmented system 
matrices. The time domain stress relaxation is modeled 
by a modulus function in the Laplace domain. This 
complex modulus can be written in Laplace domain from 
Eq. (6) as  
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where is the equilibrium value of the modulus, 

i.e. the final value of the relaxation function G(t), and s is 
the Laplace domain operator. The hatted terms are 
obtained from the curve fit to the complex modulus data 
for a particular VEM at a given temperature. 

*G

The equation of motion, which uses a complex shear 
modulus to describe damping, in the Laplace domain is  
 

2
2 *

2 2
1

2( ) 1 ( ) ( ) ( )
2

k
n n

v n
n n n n

s sMs x s G K s x s F s
s s

ςωα
ςω ω=

⎛ ⎞+
+ + =⎜ ⎟+ +⎝ ⎠

∑  (9) 

 
using the dissipation coordinates 
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Such added degrees of freedom are also called internal 

variables. Eqs. (9) and (10) multiplied by , and the 
following equation of motion can be assembled as 
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where z(s) is the vector of dissipation coordinates. 

This is the final form of the GHM model as described by 
McTavish and Hughes. [14] 

 
2.3 Hamilton’s Principle and Assumed Modes 

Method 
Thus far, displayed representations of displacement 

measures are used directly in Hamilton’s variational 
equation, 
 

2

1

( )
t

t
T V W dtδ δ δ− +∫ = ,                 (12) 

 

0 0xvδ δθ δϕ= = =     at                       1 2,t t t=
 

Herein  and V  are the kinetic and strain energies, 
respectively,  is the work done by the external 
distributed loads, and are two arbitrary instants of 

the , and 

T
W

0t 1t
t δ  is the variation operator. the kinetic 

energy T, and potential energy V for composite-VEM 
thin walled beam 

The expressions for the virtual work done by 
externally applied forces are 

 

0
( , ) ( , )

L

fW f z t v z tδ∂ = ∫ dz                 (14) 

 
The governing system of thin walled beams are 

expressed as  
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In addition, for composite-VEM beam the solution of 

Eqs. (9) must satisfy the geometric boundary conditions 
at    0z =

0 0xvϕ ϕ θ′ = = = =  
 

and the natural boundary conditions at z L= , 
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For computational reasons, it is necessary to 

discretize the boundary-values problem, which amounts 
to representing , and 0 ( , )v z t ( , )x z tθ ( , )z tφ by means 
of series of space-dependent trial functions multiplied by 
time-dependent generalized coordinates as follows:  
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are the vectors of trial functions, whereas  
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are vectors of generalized coordinates and the 

superscript T denotes the transpose operation of a matrix. 
These representations of displacement measures are 

used directly in Hamilton’s variational equation. 

 

Performing the integration with respect to the 
spanwise z coordinate and with respect to time, and 
keeping in mind Hamilton’s condition, from Eq. (15) one 
obtains the discrete equation of motion: 

 
[ ] ( ) [ ] ( ) ( )L L vM x t K K x t F t′+ + =           (20) 

 
where [ ]LM  and [ L v ]K K ′+  are the mass and 

stiffness matrices, respectively, of the structure 

considered. 
This case corresponds to shearable structure featuring 

warping and manufactures of an anisotropic composite 
material.  
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The entire motion equation incorporating added 

damping matrix by GHM method is expressed as  
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By the defining of the state vector as 

 can be cast in 
state space form  
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3. NUMERICAL SIMULATIONS  

The considered geometrical and physical characteristics 
of the blade structure and VEM are respresented by Table 
1 and Table 2, respectively.  
 

Table 1. Composite properties (Ref.9) 
 
Properties  Value  Properties  Value 
L  2.032 m 

TE  5.17e9 N/m 

bH  4.953e-3 m 
LE  20.68e10 N/m

b cρ ρ=  1528.15 

 
3/kg m

TTG  3.1e9 N/m 

ν  0.25  2.55e9 N/m 
LLG
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Table 2 Viscoelastic material properties (Isotropy) - 3M 
ISD 112 (Ref.15) 
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-0.0002

-0.0001

0

0.0001
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0.0003

0 0.2 0.4 0.6 0.8 1

uncontrolled (1.0)
uncontrolled (2.0)
VEM controlled (1.0)
VEM controlled (2.0)

t

v
_

Properties  Value  Properties  Value 
L  2.03 m   vE 1.4e6N/m 

v cH H=  2.54.e-4 m 
1.27 e-4 m 

  vG 5e5N/m 

vρ  1250 
3/Kg m  

 ν  0.4 

 
Table 3. GHM parameters (Ref.15) 
 
Properties  Value 
a 6 
ξ  4 

ω  10000 rad/s 

 

 
The GHM parameters used in the present study are 

shown in Table 3. The result of numerical simulation 
using one mini oscillator GHM method is presented in 
Fig. 3-7. 
 Fig. 3-6 show the passive impulse time response for tip 
displacement in the transverse direction of the 
composite-VEM thin walled blade model for difference 
ply angles, taper ratios and VEM thicknesses. The 
system model is sandwich beam type that has the same 
height in bottom and top composite beam and full 
embedded in it with VEM. Fig. 7 displays the effect of 
embedded VEM thickness to the dynamic response of 
the structure. The same trend is reflected in the ref.(18). 
Fig. 7 also shows the frequency response of tip 
displacement of the composite-VEM thin walled blade 
model for difference VEM thickness. 
The effect of VEM can be found simply in the result of 

Figs. 3-7. 
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Fig.3 The nondimensional uncontrolled/controlled tip 
displacement of the beam subjected to impulse input for 
two ply angles 
(ply angle = 45, 60, taper ratio=1.5, vH =2.54e-4) 

 

 
Fig.4 The nondimensional uncontrolled/controlled tip 
displacement of the beam subjected to impulse input for 
two taper ratios  
(ply angle = 60, taper ratio=1.0, 2.0, vH =2.54e-4) 
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Fig.5 The uncontrolled/controlled tip displacement of the 
beam subjected to impulse input for two taper ratios 
(ply angle = 70, taper ratio=1.0, 2.0, vH =1.27e-4)   
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Fig.6 The nondimensional uncontrolled/controlled tip 
displacement of the beam subjected to impulse input for 
two VEM thicknesses 
(ply angle = 90, taper ratio=1.5, vH =2.54e-4, 1.27e-4) 
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Fig.7 The uncontrolled/controlled of frequency response 
of the tip displaced of the beam  
(ply angle = 80, taper ratio=1.5, vH =2.54e-4, 1.27e-4) 

4. CONCLUSIONS  

The structure formulation is based on the Extended 
Galerkin Method. Frequency dependent damping is 
modeled using the GHM method. Furthermore, GHM is 
able to account for increased damping associated with 
various VEM thickness. The displayed numerical results 
provide a comprehensive picture of result of 
implementing VEM embedded over the entire span of 
composite blade to show reductions of vibration. Further 
study will include the case of a patch of VEM 
incorporating its optimized placement exposed to various 
types of external loads. Although of an evident 
importance, to the best of author’s knowledge, no such 
studies including vibration and dynamic analysis of 
composite blade embedded VEM exposed to external 
loads can be found in the specialized literature. 
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