• Title/Summary/Keyword: Dynamic constraint

Search Result 446, Processing Time 0.027 seconds

Substructuring and Decoupling of Discrete Systems from Continuous System

  • Eun, Hee-Chang;Koo, Jae-Oh
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This study proposes analytical methods to establish the eigenfunction of continuous system due to substructuring and decoupling of discrete subsystems. The dynamic characteristics of updated continuous system are evaluated by the constraint effect of consistent deformation at the interfaces between two systems. Beginning with the dynamic equation for constrained discrete system, this work estimates the modal eigenmode function for the continuous system due to the addition or deletion of discrete systems. Numerical applications illustrate the validity and applicability of the proposed method.

Analysis of Dynamic Equilibrium Configuration of Speed Governor (조속기의 동적 평형위치 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4733-4738
    • /
    • 2013
  • This paper proposes a method to obtain the dynamic equilibrium configuration of a constrained mechanical system by using multibody dynamic analysis. Dynamic equilibrium equations with independent coordinates are derived from the time-dependent constraint equations and dynamic equations of a multibody system. The Newton-Raphson method is used to find numerical solutions for nonlinear algebraic equations that are composed of the dynamic equilibrium and constraint equations. The proposed method is applied to obtain the dynamic equilibrium configuration of a speed governor, and the results are verified on the basis of the results from conventional dynamic analysis. Furthermore, vertical displacements at equilibrium configuration, which varied with the rotational velocity of the speed governor, are calculated, and design parameter analysis of the equilibrium configuration is presented.

Dynamic Decision Making using Social Context based on Ontology (상황 온톨로지를 이용한 동적 의사결정시스템)

  • Kim, Hyun-Woo;Sohn, M.-Ye;Lee, Hyun-Jung
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.43-61
    • /
    • 2011
  • In this research, we propose a dynamic decision making using social context based on ontology. Dynamic adaptation is adopted for the high qualified decision making, which is defined as creation of proper information using contexts depending on decision maker's state of affairs in ubiquitous computing environment. Thereby, the context for the dynamic adaptation is classified as a static, dynamic and social context. Static context contains personal explicit information like demographic data. Dynamic context like weather or traffic information is provided by external information service provider. Finally, social context implies much more implicit knowledge such as social relationship than the other two-type context, but it is not easy to extract any implied tacit knowledge as well as generalized rules from the information. So, it was not easy for the social context to apply into dynamic adaptation. In this light, we tried the social context into the dynamic adaptation to generate context-appropriate personalized information. It is necessary to build modeling methodology to adopt dynamic adaptation using the context. The proposed context modeling used ontology and cases which are best to represent tacit and unstructured knowledge such as social context. Case-based reasoning and constraint satisfaction problem is applied into the dynamic decision making system for the dynamic adaption. Case-based reasoning is used case to represent the context including social, dynamic and static and to extract personalized knowledge from the personalized case-base. Constraint satisfaction problem is used when the selected case through the case-based reasoning needs dynamic adaptation, since it is usual to adapt the selected case because context can be changed timely according to environment status. The case-base reasoning adopts problem context for effective representation of static, dynamic and social context, which use a case structure with index and solution and problem ontology of decision maker. The case is stored in case-base as a repository of a decision maker's personal experience and knowledge. The constraint satisfaction problem use solution ontology which is extracted from collective intelligence which is generalized from solutions of decision makers. The solution ontology is retrieved to find proper solution depending on the decision maker's context when it is necessary. At the same time, dynamic adaptation is applied to adapt the selected case using solution ontology. The decision making process is comprised of following steps. First, whenever the system aware new context, the system converses the context into problem context ontology with case structure. Any context is defined by a case with a formal knowledge representation structure. Thereby, social context as implicit knowledge is also represented a formal form like a case. In addition, for the context modeling, ontology is also adopted. Second, we select a proper case as a decision making solution from decision maker's personal case-base. We convince that the selected case should be the best case depending on context related to decision maker's current status as well as decision maker's requirements. However, it is possible to change the environment and context around the decision maker and it is necessary to adapt the selected case. Third, if the selected case is not available or the decision maker doesn't satisfy according to the newly arrived context, then constraint satisfaction problem and solution ontology is applied to derive new solution for the decision maker. The constraint satisfaction problem uses to the previously selected case to adopt and solution ontology. The verification of the proposed methodology is processed by searching a meeting place according to the decision maker's requirements and context, the extracted solution shows the satisfaction depending on meeting purpose.

Revisting Clock Synchronization Problems : Static and Dynamic Constraint Transformations for Real Time Systems (시계 동기화 문제의 재 고찰 : 실시간 시스템을 위한 정적/동적 제약 변환 기법)

  • Yu, Min-Su;Park, Jeong-Geun;Hong, Seong-Su
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.10
    • /
    • pp.1264-1274
    • /
    • 1999
  • 본 논문에서는 분산된 클록들을 주기적으로 동기화 시키는 분산 실시간 시스템에서 시간적 제약을 만족시키기 위한 정적/동적 시간 제약(timing constraint) 변환 기법을 제안한다. 전형적인 이산클록동기화(discrete clock synchronization) 알고리즘은 클록의 값을 순간적으로 조정하여 클록의 시간이 불연속적으로 진행한다. 이러한 시간상의 불연속성은 시간적 이벤트를 잃어버리거나 다시 발생시키는 오류를 범하게 한다.클록 시간의 불연속성을 피하기 위해 일반적으로 연속클록동기화(continuous clock synchronization) 기법이 제안되고 있지만 소프트웨어적으로 구현되면 많은 오버헤드를 유발시키는 문제점이 있다. 본 논문에서는 시간적 제약을 동적으로 변환시키는 DCT (Dynamic Constraint Transformation) 기법을 제안하였으며, 이를 통해 기존의 이산클록동기화 알고리즘을 수정하지 않고서도 클록 시간의 불연속성에 의한 문제점들을 해결할 수 있도록 하였다. 아울러 DCT에 의해 이산클록동기화 하에서 생성된 태스크 스케쥴이 연속클록동기화에 의해 생성된 스케쥴과 동일함을 증명하여 DCT의 동작이 이론적으로 정확함을 증명하였다.또한 분산 실시간 시스템에서 지역 클록(local clock)이 기준 클록과 완벽하게 일치하지 않아서 발생하는 스케쥴링상의 문제점을 다루었다. 이를 위해 먼저 두 가지의 스케쥴링 가능성, 지역적 스케쥴링 가능성(local schedulability)과 전역적 스케쥴링 가능성(global schedulability)을 정의하고, 이를 위해 시간적 제약을 정적으로 변환시키는 SCT (Static Constraint Transformation) 기법을 제안하였다. SCT를 통해 지역적으로 스케쥴링 가능한 태스크는 전역적으로 스케쥴링이 가능하므로, 단지 지역적 스케쥴링 가능성만을 검사하면 스케쥴링 문제를 해결할 수 있도록 하였고 이를 수학적으로 증명하였다.Abstract In this paper, we present static and dynamic constraint transformation techniques for ensuring timing requirements in a distributed real-time system possessing periodically synchronized distributed local clocks. Traditional discrete clock synchronization algorithms that adjust local clocks instantaneously yield time discontinuities. Such time discontinuities lead to the loss or the gain of events, thus raising serious run-time faults.While continuous clock synchronization is generally suggested to avoid the time discontinuity problem, it incurs too much run-time overhead to be implemented in software. We propose a dynamic constraint transformation (DCT) technique which can solve the problem without modifying discrete clock synchronization algorithms. We formally prove the correctness of the DCT by showing that the DCT with discrete clock synchronization generates the same task schedule as the continuous clock synchronization.We also investigate schedulability problems that arise when imperfect local clocks are used in distributed real-time systems. We first define two notions of schedulability, global schedulability and local schedulability, and then present a static constraint transformation (SCT) technique. The SCT ensures that it is sufficient to check the schedulability of a task locally in a node with a local clock, since the global schedulability of the task is derived from its local schedulability through SCT. We formally prove the correctness of SCT.

Dynamic VBR traffic characterization for video service in ATM network (ATM 망에서 비디오 서비스를 위한 동적 VBR 트래픽 특성화)

  • 황재철;조미령;이상원;이상훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.455-470
    • /
    • 2001
  • This paper is focused on the traffic characterization for the efficient transmission of the VBR video source in the ATM network. For the traffic characterization, low traffic monitoring technique is applied and the dynamic VBR characterization method is suggested to satisfy the delay requirement. The dynamic VBR method uses the token bucket algorithm buffering though Cumulative Constraint Function. According to the Cumulative Constraint Function, the packet initially started transferring at the peak rate and the token bucket provided proper amount of buffer for traffic after a certain period of monitoring. It also reduced the network resource bandwidth through renewal of the cumulative frame and changed the rate from the previous frame information. It requires only small amount of monitoring and causes little overhead. In addition, it lowered the complexity of Deterministic Constraint Function to 0(n) and mapped the token rate and token depth to the token bucket. This study shows less network resource consumed than the previous method, comparing and analyzing the result of simulations.

  • PDF

A numerical method for dynamic analysis of cam-follower mechanism including impact, separation and elastic deformation (충격분리 및 탄성변형을 포함한 캠-종동절 기구의 동역학적 해석을 위한 수치해석적 방법)

  • Lee, Gi-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.519-528
    • /
    • 1998
  • A numerical method is presented for the dynamic analysis of cam and follower. Contact and separation between the cam and the follower are analyzed by imposing dynamic contact condition. The correct solution is obtained without spurious oscillation by imposing the velocity and acceleration constraints as well as the displacement constraint on the possible contact point. The constraints are satisfied by iteratively reducing the constraint errors toward zero, and a simple time integration of ordinary differential equation is employed for the solution of the equation of motion. The solution procedure associated with the iterative scheme is presented, and numerical simulations are conducted to demonstrate the accuracy of the solution.

Dynamic Consideration of Athletic Constraints on Skating Motion (스케이트 운동의 생성을 위한 구속조건의 고찰)

  • Hwang, Chang-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.55-67
    • /
    • 2009
  • This paper addresses the dynamic consideration of the athletic constraints on skating motion. In order to generate a human-like skating motion, the athletic constraints are distinctively analyzed into dynamic constraints and physical constraints. A close investigation of the athletic constraints evolved valid extent of dominant parameter for a leg muscle. During the human-like skating motion, the state of actuation was shifted from region of maximum force to region of maximum power. Simulation results were intuitively comprehensible, and the effectiveness of analytic algorithm was demonstrated for skating motion.

A Medium Access Control Protocol for rt- VBR Traffic in Wireless ATM Networks

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • This paper proposes a MAC protocol for real-time VBR (rt-VBR) services in wireless ATM networks. The proposed protocol is characterized by a contention-based mechanism of the reservation request, a contention-free polling scheme for transferring the dynamic parameters, and a priority scheme of the slot allocation. The design objective of the proposed protocol is to guarantee the real-time constraint of rt-VBR traffic. The scheduling algorithm uses a priority scheme based on the maximum cell transfer delay parameter. The wireless terminal establishes an rt-VBR connection to the base station with a contention-based scheme. The base station scheduler allocates a dynamic parameter minislot to the wireless terminal for transferring the residual lifetime and the number of requesting slots as the dynamic parameters. Based on the received dynamic parameters, the scheduler allocates the uplink slots to the wireless terminal with the most stringent delay requirement. The simulation results show that the proposed protocol can guarantee the delay constraint of rt-VBR services along with its cell loss rate significantly reduced.

A Model Reduction Method for Effective Analysis of Structures (구조물의 효율적인 해석을 위한 모델 축소기법 연구)

  • Park, Young-Chang;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2006
  • Substructure coupling or component mode synthesis may be employed in the solution of dynamic problems for large, flexible structures. The model is partitioned into several subdomains, and a generalized Craig-Bampton representation is derived. In this paper the mode sets (normal modes, constraint modes) is employed for model reduction. A generalized model reduction procedure is described. Vaious reduction methods that use constraint modes is described in detail. As examples, a flexible structure and a 10 DOF damped system are analyzed. Comparison with a conventional reduction method based on a complete model is made via eigenpair and dynamic responses.

  • PDF

Pedagogically-Driven Courseware Content Generation for Intelligent Tutoring Systems

  • Hadji, Hend Ben;Choi, Ho-Jin;Jemni, Mohamed
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • This paper describes a novel approach to adaptive courseware generation. This approach adopts its structure from existing intelligent tutoring systems and introduces a new component called pedagogical scenario model to support pedagogical flexibility in the adaptation process of courseware generation system. The adaptation is carried out using Dynamic Constraint Satisfaction Problem framework, which is a variant of classical Constraint Satisfaction Problem, to deliver courseware tailored to individual learner. Such a framework provides a high level of expressiveness to deal with the particular characteristics of courseware generation problem. Further, it automatically designs a sound courseware satisfying the design constraints imposed by the domain, the pedagogical scenario and learner models.