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Abstract  This study proposes analytical methods to establish the eigenfunction of continuous system due to substructuring and 
decoupling of discrete subsystems. The dynamic characteristics of updated continuous system are evaluated by the constraint effect of 
consistent deformation at the interfaces between two systems.  Beginning with the dynamic equation for constrained discrete system, this 
work estimates the modal eigenmode function for the continuous system due to the addition or deletion of discrete systems. Numerical 
applications illustrate the validity and applicability of the proposed method.
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1. INTRODUCTION

Modal synthesis technique predicts the dynamic behavior of a 
coupled system based on the consistency of modal displacements in 
the interfaces among uncoupled subsystems. A complex structure 
is combined by analytical models of several substructures and then 
analyzed by proper approaches. While subcomponent modeling of 
built-up structures has become commonplace using finite elements, 
direct coupling of experimental and analytical models is rare 
because of the difficulties encountered. 

The process of removing one substructure from another is called 
substructure uncoupling or substructure decoupling and is carried 
out by the applicability of the substructuring method. If masses are 
installed on structure while making experiments for describing 
its dynamic characteristics, it is necessary to get rid of their effect 
from the experimental data for more accurate analysis.  The masses 
should be regarded as substructures and the decoupling process 
of masses from the entire system must be performed for the 

analysis of pure structure itself. A number of researchers have used 
substructure uncoupling to remove rigid masses from a structure, 
have accounted for the static flexibility in the joint between a fixture 
and the substructure in order to approximate the residual effect of 
out of band modes, and have removed a flexible substructure from 
a master system using FRF (Frequency Response Function) based 
substructuring (FBS). 

Decoupling problem can b e seen as  the re verse of  the 
substructuring problem.  Starting from the known dynamic 
behavior of the coupled system and from information about the 
remaining part of the structural system, D’Ambrogio and Fregolent 
(2010) identified the dynamic behavior of a structural subsystem. 
Matthew et. al (2010) presented a method that removes the effects 
of a flexible fixture from an experimentally obtained modal model 
on the modal basis of the substructure to accurately estimate the 
modal parameters of the built-up system.  Based on reconstruction 
of the interface forces acting between the unknown subsystem 
and its neighbor, Sjövall and Abrahamsson (2008) presented a 
theoretical method regarding frequency domain load identification.  
Voormeeren et. al (2010) presented a method to quantify the 
uncertainty of the coupled system’s FRFs based on the uncertainties 
of the subsystem FRFs.  Ryberg and Mir (2007) developed 
an experimental model with forward prediction capabilities 
for passenger vehicle axle whine performance based on FBS 
techniques to predict the dynamic behavior of complex structures 
based on the dynamic properties of each component of the 
structure.  D’Ambrogio and Sestieri (2004) analyzes the possibility 
of assembling together different substructures' models using 
expansion techniques to provide the information on the rotational 
DOFs as well as appropriate modeling of joints and combining 
modal models and FE models. Sjövall et. al (2006) presented 
a formulation in terms of the state-space parameterization to 
represent transfer function constraints.  Rodriguez et al. (2009) 
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presented damage submatrices method (DSM) that localizes 
and assess degradation of stiffness at any structural element 
in a building.  And they presented an approach to expand the 
condensed stiffness matrix of the damaged structure to global 
coordinates and to identify damage.  Ozgen and Kim (2007) 
developed the analytical methods to expand the experimental 
damping matrix to the size of the analytical model. Based on 
the dual and primal assembly of substructures, de Klerk et. al 
(2008) provided a framework for the various classes of methods 
and a mathematical description of substructured problems. 
Schmitz and Duncan (2005) described the FRF or receptance 
of the tool and machine-spindle-holder substructure coupled 
through translational and rotational springs and dampers using 
receptance substructure analysis method. The modal synthesis of a 
structure that is decomposed into substructures is a Rayleigh-Ritz 
approximation of the global eigenvalue problem using coupling 
modes describing the interfacial displacements. Based on special 
extension operators from the boundary of each subdomain to 
the whole interface, Bourquin and Namar (1998) introduced less 
expensive coupling modes. Retaining the lower-frequency normal 
modes of the substructures, neglecting a frequency truncation 
criterion and considering the lower-frequency normal modes and 
residual flexibility, Zou et. al (2002) provided a modal synthesis 
method of lateral vibration analysis for rotor-bearing system.

This work presents analytical methods to estimate the modal 
characteristics of continuous system due to substructuring and 
deleting of discrete subsystems.  The analysis is based on the 
evaluation of the constraint effect at the interfacial positions 
between adjacent discrete system and continuous system. The 
constraint effect includes the variation in the internal displacements 
or forces of the initial system due to the constraints. The validity of 
the proposed methods is illustrated in several applications.  

2. FORMULATION

2.1 Discrete system
The substructuring and decoupling of discrete subsystems are 

performed by evaluating the interaction at the interfaces between 
adjacent systems.  The interactive constraint indicates the consistent 
deformation among the subsystems and the modal responses of the 
resulting systems can be estimated based on the constrained modal 
effect.  This section simply introduces the mathematical form to 
describe the constraint effect from the generalized inverse method 
(1992) on discrete dynamic system.

The dynamic response of a system that is assumed to be linear 
and approximately discretized for n degrees of freedom can be 
described by the equations of motion
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( )tfKqqCqM =++  (1)

where [ ]Tnqqq 21=q , M denotes an nn×

initial mass matrix, and nnR ×∈C and nnR ×∈K are the 
damping and stiffness matrices, respectively.  The dy-
namic equation can be expressed in matrix form of 

( )t,,qqFqM  = (2)
where ( ) ( )tt fKqqCqq,F +−−=  , . Assume that the sys-
tem is constrained by ( )mnm > acceleration-based con-
straint equations expressed as

( ) ( )tt ,,,, qqbqqqA  = (3)
where A is an nm× matrix, q is the actual acceleration, 
and b is an 1×m vector. 

The generalized inverse method derived the dynamic 
equation for constrained dynamic system by minimizing 
the Gauss function with respect to the actual acceleration 
vector :

( ) ( )AabAMMaq −+=
+−− 2/12/1 (4)

where FMa 1−= .

The synthesis of subsystems requires the action of con-
straint forces in the satisfaction of compatibility conditions 
between adjacent subsystems. The constraint equations of 
compatibility conditions between adjacent subsystems are 
expressed by

( ) 0qqqA = t,, (5)
and the dynamic equation is modified as

( ) AaAMMaq
+−−−= 2/12/1 (6)

The second term in the right-hand side of Eqn. (6) indi-
cates the variation in the acceleration to be necessary for 
satisfying constraint conditions and the multiplication of 
the second term by mass matrix leads to the constraint 
force vector.  Conversely, the decoupling of subsystem 
from an entire system requires the removal of constraint 
forces between an entire system and removed subsystems. 
Assuming the entire system of ( )mn + DOFs, the re-
moved subsystem of m DOFs and the residual system of 
n DOFs, the dynamic equation of the residual system 
after deleting the subsystem can be written as

( ) ddddddd aAMAMaq
+−−+= 2/12/1 (7)

where [ ]TT
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ddd FMa 1−= . The subscripts e, r and d represent the en-
tire system, removed subsystem and decomposed residual 
system, respectively.  The substructuring and decoupling 
of subsystems are summarized as addition and removal of 
constraint effect between subsystems, respectively.  The 
following example describes the mode shapes of residual 
system to remove subsystems from an entire discrete sys-
tem.  

Example 1)
The mass of accelerometers installed on a system affects 

the measured data and their effect should be removed for 
obtaining pure data.  It needs a decoupling process to 
remove the effect of the accelerometers from the entire 
system.  This application considers an undamped dynam-
ic system of 7 DOFs in Fig. 1.  The numerical values uti-
lized for this example were selected as shown in Table 1. 

Table 1 Dynamic property
Mass(kg)

1m 2m 3m 4m 5m 6m 7m am
15 8 10 9 12 13 9 0.4

Stiffness(N/m)
1k 2k 3k 4k 5k 6k 7k

4000 12000 8000 7000 9000 5000 6000

In the table 1, am denotes the additional mass attached at 
the 3rd and 7th mass locations. 

Table 2 represents the first five natural frequencies of 
the initial beam and the residual system to remove two 
masses from an entire system, and the corresponding mode 
shapes, respectively.  Figure 2 represents that the slight 
difference in the modal properties between the residual 
system and the initial system is due to the affect of the 
removed masses while decoupling.  It is observed that the 
modal parameters of the residual system can be properly 
described by the proposed decoupling method.
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tem.  

Example 1)
The mass of accelerometers installed on a system affects 

the measured data and their effect should be removed for 
obtaining pure data.  It needs a decoupling process to 
remove the effect of the accelerometers from the entire 
system.  This application considers an undamped dynam-
ic system of 7 DOFs in Fig. 1.  The numerical values uti-
lized for this example were selected as shown in Table 1. 

Table 1 Dynamic property
Mass(kg)

1m 2m 3m 4m 5m 6m 7m am
15 8 10 9 12 13 9 0.4

Stiffness(N/m)
1k 2k 3k 4k 5k 6k 7k

4000 12000 8000 7000 9000 5000 6000

In the table 1, am denotes the additional mass attached at 
the 3rd and 7th mass locations. 

Table 2 represents the first five natural frequencies of 
the initial beam and the residual system to remove two 
masses from an entire system, and the corresponding mode 
shapes, respectively.  Figure 2 represents that the slight 
difference in the modal properties between the residual 
system and the initial system is due to the affect of the 
removed masses while decoupling.  It is observed that the 
modal parameters of the residual system can be properly 
described by the proposed decoupling method.

                                             (6)

The second term in the right-hand side of Eqn. (6) indicates 
the variation in the acceleration to be necessary for satisfying 
constraint conditions and the multiplication of the second term 
by mass matrix leads to the constraint force vector.  Conversely, 
the decoupling of subsystem from an entire system requires the 
removal of constraint forces between an entire system and removed 
subsystems.  Assuming the entire system of ( )mn +  DOFs, the 
removed subsystem of m  DOFs and the residual system of n  
DOFs, the dynamic equation of the residual system after deleting 
the subsystem can be written as
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ddd FMa 1−= . The subscripts e, r and d represent the entire 
system, removed subsystem and decomposed residual system, 
respectively.  The substructuring and decoupling of subsystems are 
summarized as addition and removal of constraint effect between 
subsystems, respectively.  The following example describes the 
mode shapes of residual system to remove subsystems from an 
entire discrete system.  

Example 1)
The mass of accelerometers installed on a system affects the 

measured data and their effect should be removed for obtaining 
pure data.  It needs a decoupling process to remove the effect of the 
accelerometers from the entire system.  This application considers 
an undamped dynamic system of 7 DOFs in Fig. 1.  The numerical 
values utilized for this example were selected as shown in Table 1.
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Mass(kg)
1m 2m 3m 4m 5m 6m am am

15 8 10 9 12 13 9 0.4
Stiffness(N/m)

1k 2k 4k 4k 5k 6k 7k
4000 12000 8000 7000 9000 5000 6000

Table 1. Dynamic property

In the table 1, am  denotes the additional mass attached at the 3rd 
and 7th mass locations. 

Table 2 represents the first five natural frequencies of the initial 
beam and the residual system to remove two masses from an entire 
system, and the corresponding mode shapes, respectively.  Figure 
2 represents that the slight difference in the modal properties 
between the residual system and the initial system is due to the 
affect of the removed masses while decoupling.  It is observed 
that the modal parameters of the residual system can be properly 
described by the proposed decoupling method.

Fig. 1 A dynamic system of 7 DOFs to install additional 
masses
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Table 2 Comparison of natural frequencies of the initial 
and residual systems ( ).sec/.rad

1st 2nd 3rd 4th 5th
Initial beam 5.15 14.54 23.29 34.16 38.65

Residual beam 5.14 14.53 23.28 34.13 38.63

2.2 Continuous system
A complicated system is likely to have parts that are best 

modeled with continuous equations. Modal synthesis mod-
el is well motivated as the linear partial differential equa-
tion for a vibrating system, with appropriate boundary 
conditions, has as solutions a superposition of vibration 
modes.  The eigenfunction of continuous system is 
smooth curve to be differentiable with respect to the coor-
dinate x.

Modes of continuous systems are computed by the solu-
tion of the linear partial differential equation found for the 
beam. The differential equation of motion for transverse 
free vibration of flexural beam in Fig. 3 can be written as
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where ( )txv , denotes the displacement in the y direction, 
E and I are Young’s modulus and moment of inertia, and 
ρ and A represent the unit mass per volume and sectional 
area.  For a uniform beam, Eqn. (8) can be expressed as
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Fig. 3 A simple beam of arbitrary boundary conditions

The free vibration solution can be found using the 
method of separation of variables as

( ) ( ) ( )tTxtxv φ=, (10)
Using Eqn. (10) into Eqn. (9) and arranging yields
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where 2ω=a can be shown to be a positive constant. 
Equation (11) can be rewritten as two equations:
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The solution of Eqn. (12b) is given by
( ) tBtAtT ωω sincos += (13)

where A and B are constants that can be found from the 
initial conditions. The solution of Eqn. (12a) is assumed 
to be of exponential form as

( ) sxCex =φ (14)
where C and s are constants.  Substitution of Eqn. (14) 
into Eqn. (12a) results in the auxiliary equation

044 =− βs (15)
The roots of Eqn. (15) are given by

β±=2,1s , βis ±=4,3 (16)
Thus, the solution of Eqn. (12a) using trigonometric prop-
erty can be expressed as

( ) xCxCxCxCx ββββφ sinhcoshsincos 4321 +++=
(17)

where 1C , 2C , 3C and 4C are constants to be deter-
mined by boundary conditions. The natural frequencies of 
the beam can be determined from

A
EI
ρ

βω 2= (18)

Assuming that a known mass is added on a position 1x
from a left end support of a simply supported beam, the 
eigenfunction should be changed by the mechanical inter-
action at the interface 1x between the beam and the mass 
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Table 2 Comparison of natural frequencies of the initial 
and residual systems ( ).sec/.rad

1st 2nd 3rd 4th 5th
Initial beam 5.15 14.54 23.29 34.16 38.65

Residual beam 5.14 14.53 23.28 34.13 38.63

2.2 Continuous system
A complicated system is likely to have parts that are best 

modeled with continuous equations. Modal synthesis mod-
el is well motivated as the linear partial differential equa-
tion for a vibrating system, with appropriate boundary 
conditions, has as solutions a superposition of vibration 
modes.  The eigenfunction of continuous system is 
smooth curve to be differentiable with respect to the coor-
dinate x.

Modes of continuous systems are computed by the solu-
tion of the linear partial differential equation found for the 
beam. The differential equation of motion for transverse 
free vibration of flexural beam in Fig. 3 can be written as
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where ( )txv , denotes the displacement in the y direction, 
E and I are Young’s modulus and moment of inertia, and 
ρ and A represent the unit mass per volume and sectional 
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The free vibration solution can be found using the 
method of separation of variables as

( ) ( ) ( )tTxtxv φ=, (10)
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The solution of Eqn. (12b) is given by
( ) tBtAtT ωω sincos += (13)

where A and B are constants that can be found from the 
initial conditions. The solution of Eqn. (12a) is assumed 
to be of exponential form as

( ) sxCex =φ (14)
where C and s are constants.  Substitution of Eqn. (14) 
into Eqn. (12a) results in the auxiliary equation

044 =− βs (15)
The roots of Eqn. (15) are given by

β±=2,1s , βis ±=4,3 (16)
Thus, the solution of Eqn. (12a) using trigonometric prop-
erty can be expressed as

( ) xCxCxCxCx ββββφ sinhcoshsincos 4321 +++=
(17)

where 1C , 2C , 3C and 4C are constants to be deter-
mined by boundary conditions. The natural frequencies of 
the beam can be determined from

A
EI
ρ

βω 2= (18)

Assuming that a known mass is added on a position 1x
from a left end support of a simply supported beam, the 
eigenfunction should be changed by the mechanical inter-
action at the interface 1x between the beam and the mass 

Figure 2. Difference in normalized mode shape vectors between two states

1st 2nd 3rd 4th 5th
Initial beam 5.15 14.54 23.29 34.16 38.65

Residual beam 5.14 14.53 23.28 34.13 38.63

Table 2. Comparison of natural frequencies of the initial 

and residual systems ( ).sec/.rad

2.2 Continuous system
A complicated system is likely to have parts that are best modeled 

with continuous equations. Modal synthesis model is well 
motivated as the linear partial differential equation for a vibrating 
system, with appropriate boundary conditions, has as solutions a 
superposition of vibration modes.  The eigenfunction of continuous 
system is smooth curve to be differentiable with respect to the 
coordinate x. 

Modes of continuous systems are computed by the solution of 
the linear partial differential equation found for the beam. The 
differential equation of motion for transverse free vibration of 
flexural beam in Fig. 3 can be written as
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where ( )txv ,  denotes the displacement in the y direction, E and I 
are Young’s modulus and moment of inertia, and ρ  and A represent 
the unit mass per volume and sectional area.  For a uniform beam, 
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Table 2 Comparison of natural frequencies of the initial 
and residual systems ( ).sec/.rad

1st 2nd 3rd 4th 5th
Initial beam 5.15 14.54 23.29 34.16 38.65

Residual beam 5.14 14.53 23.28 34.13 38.63

2.2 Continuous system
A complicated system is likely to have parts that are best 

modeled with continuous equations. Modal synthesis mod-
el is well motivated as the linear partial differential equa-
tion for a vibrating system, with appropriate boundary 
conditions, has as solutions a superposition of vibration 
modes.  The eigenfunction of continuous system is 
smooth curve to be differentiable with respect to the coor-
dinate x.

Modes of continuous systems are computed by the solu-
tion of the linear partial differential equation found for the 
beam. The differential equation of motion for transverse 
free vibration of flexural beam in Fig. 3 can be written as
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where ( )txv , denotes the displacement in the y direction, 
E and I are Young’s modulus and moment of inertia, and 
ρ and A represent the unit mass per volume and sectional 
area.  For a uniform beam, Eqn. (8) can be expressed as
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The free vibration solution can be found using the 
method of separation of variables as

( ) ( ) ( )tTxtxv φ=, (10)
Using Eqn. (10) into Eqn. (9) and arranging yields
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where 2ω=a can be shown to be a positive constant. 
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The solution of Eqn. (12b) is given by
( ) tBtAtT ωω sincos += (13)

where A and B are constants that can be found from the 
initial conditions. The solution of Eqn. (12a) is assumed 
to be of exponential form as

( ) sxCex =φ (14)
where C and s are constants.  Substitution of Eqn. (14) 
into Eqn. (12a) results in the auxiliary equation

044 =− βs (15)
The roots of Eqn. (15) are given by

β±=2,1s , βis ±=4,3 (16)
Thus, the solution of Eqn. (12a) using trigonometric prop-
erty can be expressed as

( ) xCxCxCxCx ββββφ sinhcoshsincos 4321 +++=
(17)

where 1C , 2C , 3C and 4C are constants to be deter-
mined by boundary conditions. The natural frequencies of 
the beam can be determined from

A
EI
ρ

βω 2= (18)

Assuming that a known mass is added on a position 1x
from a left end support of a simply supported beam, the 
eigenfunction should be changed by the mechanical inter-
action at the interface 1x between the beam and the mass 

Figure 3. A simple beam of arbitrary boundary conditions

The free vibration solution can be found using the method of 
separation of variables as

 ( ) ( ) ( )tTxtxv φ=,                                                                        (10)

Using Eqn. (10) into Eqn. (9) and arranging yields
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Table 2 Comparison of natural frequencies of the initial 
and residual systems ( ).sec/.rad

1st 2nd 3rd 4th 5th
Initial beam 5.15 14.54 23.29 34.16 38.65

Residual beam 5.14 14.53 23.28 34.13 38.63

2.2 Continuous system
A complicated system is likely to have parts that are best 

modeled with continuous equations. Modal synthesis mod-
el is well motivated as the linear partial differential equa-
tion for a vibrating system, with appropriate boundary 
conditions, has as solutions a superposition of vibration 
modes.  The eigenfunction of continuous system is 
smooth curve to be differentiable with respect to the coor-
dinate x.

Modes of continuous systems are computed by the solu-
tion of the linear partial differential equation found for the 
beam. The differential equation of motion for transverse 
free vibration of flexural beam in Fig. 3 can be written as
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where ( )txv , denotes the displacement in the y direction, 
E and I are Young’s modulus and moment of inertia, and 
ρ and A represent the unit mass per volume and sectional 
area.  For a uniform beam, Eqn. (8) can be expressed as
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Fig. 3 A simple beam of arbitrary boundary conditions

The free vibration solution can be found using the 
method of separation of variables as

( ) ( ) ( )tTxtxv φ=, (10)
Using Eqn. (10) into Eqn. (9) and arranging yields
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where 2ω=a can be shown to be a positive constant. 
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The solution of Eqn. (12b) is given by
( ) tBtAtT ωω sincos += (13)

where A and B are constants that can be found from the 
initial conditions. The solution of Eqn. (12a) is assumed 
to be of exponential form as

( ) sxCex =φ (14)
where C and s are constants.  Substitution of Eqn. (14) 
into Eqn. (12a) results in the auxiliary equation

044 =− βs (15)
The roots of Eqn. (15) are given by

β±=2,1s , βis ±=4,3 (16)
Thus, the solution of Eqn. (12a) using trigonometric prop-
erty can be expressed as

( ) xCxCxCxCx ββββφ sinhcoshsincos 4321 +++=
(17)

where 1C , 2C , 3C and 4C are constants to be deter-
mined by boundary conditions. The natural frequencies of 
the beam can be determined from

A
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ρ

βω 2= (18)

Assuming that a known mass is added on a position 1x
from a left end support of a simply supported beam, the 
eigenfunction should be changed by the mechanical inter-
action at the interface 1x between the beam and the mass 
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where 2ω=a  can be shown to be a positive constant. Equation 
(11) can be rewritten as two equations:
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Table 2 Comparison of natural frequencies of the initial 
and residual systems ( ).sec/.rad

1st 2nd 3rd 4th 5th
Initial beam 5.15 14.54 23.29 34.16 38.65

Residual beam 5.14 14.53 23.28 34.13 38.63

2.2 Continuous system
A complicated system is likely to have parts that are best 

modeled with continuous equations. Modal synthesis mod-
el is well motivated as the linear partial differential equa-
tion for a vibrating system, with appropriate boundary 
conditions, has as solutions a superposition of vibration 
modes.  The eigenfunction of continuous system is 
smooth curve to be differentiable with respect to the coor-
dinate x.

Modes of continuous systems are computed by the solu-
tion of the linear partial differential equation found for the 
beam. The differential equation of motion for transverse 
free vibration of flexural beam in Fig. 3 can be written as
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where ( )txv , denotes the displacement in the y direction, 
E and I are Young’s modulus and moment of inertia, and 
ρ and A represent the unit mass per volume and sectional 
area.  For a uniform beam, Eqn. (8) can be expressed as
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Fig. 3 A simple beam of arbitrary boundary conditions

The free vibration solution can be found using the 
method of separation of variables as

( ) ( ) ( )tTxtxv φ=, (10)
Using Eqn. (10) into Eqn. (9) and arranging yields
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The solution of Eqn. (12b) is given by
( ) tBtAtT ωω sincos += (13)

where A and B are constants that can be found from the 
initial conditions. The solution of Eqn. (12a) is assumed 
to be of exponential form as

( ) sxCex =φ (14)
where C and s are constants.  Substitution of Eqn. (14) 
into Eqn. (12a) results in the auxiliary equation

044 =− βs (15)
The roots of Eqn. (15) are given by

β±=2,1s , βis ±=4,3 (16)
Thus, the solution of Eqn. (12a) using trigonometric prop-
erty can be expressed as
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(17)

where 1C , 2C , 3C and 4C are constants to be deter-
mined by boundary conditions. The natural frequencies of 
the beam can be determined from
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Assuming that a known mass is added on a position 1x
from a left end support of a simply supported beam, the 
eigenfunction should be changed by the mechanical inter-
action at the interface 1x between the beam and the mass 
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Table 2 Comparison of natural frequencies of the initial 
and residual systems ( ).sec/.rad

1st 2nd 3rd 4th 5th
Initial beam 5.15 14.54 23.29 34.16 38.65

Residual beam 5.14 14.53 23.28 34.13 38.63

2.2 Continuous system
A complicated system is likely to have parts that are best 

modeled with continuous equations. Modal synthesis mod-
el is well motivated as the linear partial differential equa-
tion for a vibrating system, with appropriate boundary 
conditions, has as solutions a superposition of vibration 
modes.  The eigenfunction of continuous system is 
smooth curve to be differentiable with respect to the coor-
dinate x.

Modes of continuous systems are computed by the solu-
tion of the linear partial differential equation found for the 
beam. The differential equation of motion for transverse 
free vibration of flexural beam in Fig. 3 can be written as
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where ( )txv , denotes the displacement in the y direction, 
E and I are Young’s modulus and moment of inertia, and 
ρ and A represent the unit mass per volume and sectional 
area.  For a uniform beam, Eqn. (8) can be expressed as
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The free vibration solution can be found using the 
method of separation of variables as

( ) ( ) ( )tTxtxv φ=, (10)
Using Eqn. (10) into Eqn. (9) and arranging yields

( )
( )

( )
( ) 2

2

2

4

42 1 ωφ
φ

==−= a
dt

tTd
tTdx

xd
x

c (11)

where 2ω=a can be shown to be a positive constant. 
Equation (11) can be rewritten as two equations:

( ) ( ) 04
4

4
=− x

dx
xd φβφ (12a)

( ) ( ) 02
2

2
=+ tT

dt
tTd ω (12b)

where 
EI
A

c

2

2

2
4 ωρωβ == .

The solution of Eqn. (12b) is given by
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where A and B are constants that can be found from the 
initial conditions. The solution of Eqn. (12a) is assumed 
to be of exponential form as
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Assuming that a known mass is added on a position 1x
from a left end support of a simply supported beam, the 
eigenfunction should be changed by the mechanical inter-
action at the interface 1x between the beam and the mass 

                                                           (12b)

where 
EI
A

c

2

2

2
4 ωρωβ == .

The solution of Eqn. (12b) is given by
 ( ) tBtAtT ωω sincos +=                                           (13)



 

Hee-Chang Eun and Jae-Oh Koo30

 
( ) 1

1
11

2/1
11

2/1
1111 FMAMAMIG −+−−





 −=Tφ

                                                                                                   (22)

where       [ ]011 =G ,       







=

1
1 0

0
m

Aρ
M ,       [ ]111 −=A , 

 

1m .  The interaction requires the coincidence of modal 
displacement at the connection point between two systems. 
It can be mentioned as a constraint.  

The dynamic equation of the added mass at 1x can be 
expressed as
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where 1φ means the mode shape at the location 1x and 
( )tT1 represents the generalized response function of time 

t.  And the dynamic equation of the beam at 1x from 
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The constraint condition between two systems of the con-
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as
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where ( ) ( )1111 xx φφ = because of the geometric con-
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side of Eqn. (22) represents the variation of dynamic varia-
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equation after the addition of the mass at the location 1x .
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where I represents the mm 22 × identity matrix, M is an 
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The newly updated eigenfunction estimates the modal 

displacement curve for the beam with added masses by 
taking least square fitting method.  The modal variations 
deviated from the initial modal displacement mean the 
effect due to the added masses.

The decoupling of subsystems from an entire system is 
similar to the substructuring process.  However, taking 
into account that the decoupling is the opposite process of 
the substructuring, the minus sign of the second term in the 
right-hand side of Eqn. (23) should be changed to adverse 
sign for decoupling of subsystems. And the decoupling 
process indicates the relation between the entire system 
and the removed subsystem. The decoupling of the m
masses from an entire system also can be expressed as
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The second term in the right-hand side of Eqn. (24) repre-
sents the variations of the dynamic response caused by the 
removal of the masses.  The resulting eigenmodes are 
estimated by multiplying the coefficients of Eqn. (24) and 
the eigenfunction of entire system.

Fig. 4 Substructuring and decoupling of subsystems

Example 2)
Consider a simply supported beam in Fig. 5 modeled as 

a continuous system. Assume that seven masses were in-
stalled on seven different locations indicated in Table 3.
The beam has elastic modulus of GPa200 , cross-
sectional area of mm400mm300 × , length of mm6000
and unit mass per volume of 3000kg/m8 . Utilizing the 
proper boundary conditions into Eqn. (17) and arranging 
the result, the eigenfunction of the beam corresponding to 
the first mode can be derived as

( ) xxv βsin= (25)
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displacement curve for the beam with added masses by 
taking least square fitting method.  The modal variations 
deviated from the initial modal displacement mean the 
effect due to the added masses.
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The newly updated eigenfunction estimates the modal 
displacement curve for the beam with added masses by taking 
least square fitting method.  The modal variations deviated from 
the initial modal displacement mean the effect due to the added 
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displacement curve for the beam with added masses by 
taking least square fitting method.  The modal variations 
deviated from the initial modal displacement mean the 
effect due to the added masses.
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The second term in the right-hand side of Eqn. (24) repre-
sents the variations of the dynamic response caused by the 
removal of the masses.  The resulting eigenmodes are 
estimated by multiplying the coefficients of Eqn. (24) and 
the eigenfunction of entire system.

Fig. 4 Substructuring and decoupling of subsystems

Example 2)
Consider a simply supported beam in Fig. 5 modeled as 

a continuous system. Assume that seven masses were in-
stalled on seven different locations indicated in Table 3.
The beam has elastic modulus of GPa200 , cross-
sectional area of mm400mm300 × , length of mm6000
and unit mass per volume of 3000kg/m8 . Utilizing the 
proper boundary conditions into Eqn. (17) and arranging 
the result, the eigenfunction of the beam corresponding to 
the first mode can be derived as

( ) xxv βsin= (25)

         (24)

where A and B are constants that can be found from the initial 
conditions.  The solution of Eqn. (12a) is assumed to be of 
exponential form as
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Table 2 Comparison of natural frequencies of the initial 
and residual systems ( ).sec/.rad

1st 2nd 3rd 4th 5th
Initial beam 5.15 14.54 23.29 34.16 38.65

Residual beam 5.14 14.53 23.28 34.13 38.63

2.2 Continuous system
A complicated system is likely to have parts that are best 

modeled with continuous equations. Modal synthesis mod-
el is well motivated as the linear partial differential equa-
tion for a vibrating system, with appropriate boundary 
conditions, has as solutions a superposition of vibration 
modes.  The eigenfunction of continuous system is 
smooth curve to be differentiable with respect to the coor-
dinate x.

Modes of continuous systems are computed by the solu-
tion of the linear partial differential equation found for the 
beam. The differential equation of motion for transverse 
free vibration of flexural beam in Fig. 3 can be written as
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where ( )txv , denotes the displacement in the y direction, 
E and I are Young’s modulus and moment of inertia, and 
ρ and A represent the unit mass per volume and sectional 
area.  For a uniform beam, Eqn. (8) can be expressed as
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Fig. 3 A simple beam of arbitrary boundary conditions

The free vibration solution can be found using the 
method of separation of variables as

( ) ( ) ( )tTxtxv φ=, (10)
Using Eqn. (10) into Eqn. (9) and arranging yields
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where 2ω=a can be shown to be a positive constant. 
Equation (11) can be rewritten as two equations:
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The solution of Eqn. (12b) is given by
( ) tBtAtT ωω sincos += (13)

where A and B are constants that can be found from the 
initial conditions. The solution of Eqn. (12a) is assumed 
to be of exponential form as

( ) sxCex =φ (14)
where C and s are constants.  Substitution of Eqn. (14) 
into Eqn. (12a) results in the auxiliary equation

044 =− βs (15)
The roots of Eqn. (15) are given by

β±=2,1s , βis ±=4,3 (16)
Thus, the solution of Eqn. (12a) using trigonometric prop-
erty can be expressed as

( ) xCxCxCxCx ββββφ sinhcoshsincos 4321 +++=
(17)

where 1C , 2C , 3C and 4C are constants to be deter-
mined by boundary conditions. The natural frequencies of 
the beam can be determined from

A
EI
ρ

βω 2= (18)

Assuming that a known mass is added on a position 1x
from a left end support of a simply supported beam, the 
eigenfunction should be changed by the mechanical inter-
action at the interface 1x between the beam and the mass 
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where A and B are constants that can be found from the 
initial conditions. The solution of Eqn. (12a) is assumed 
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eigenfunction should be changed by the mechanical inter-
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from a left end support of a simply supported beam, the 
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Assuming that a known mass is added on a position 1x  from 
a left end support of a simply supported beam, the eigenfunction 
should be changed by the mechanical interaction at the interface 

1x  between the beam and the mass 1m .  The interaction requires 
the coincidence of modal displacement at the connection point 
between two systems. It can be mentioned as a constraint.  

The dynamic equation of the added mass at 1x  can be expressed 
as
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where 1φ  means the mode shape at the location 1x  and ( )tT1  
represents the generalized response function of time t.  And the 
dynamic equation of the beam at 1x  from Eqn. (8) can be written 
by
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( ) 011 == xxvm  (19a)

or 0111 =Tm φ      (19b)

where 1φ means the mode shape at the location 1x and 
( )tT1 represents the generalized response function of time 

t.  And the dynamic equation of the beam at 1x from 
Eqn. (8) can be written by
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The constraint condition between two systems of the con-
tinuous system and the discrete system can be also written 
as

1111 TT φφ = (21)

where ( ) ( )1111 xx φφ = because of the geometric con-
straint.  Utilizing the dynamic equation of Eqns. (19b) 
and (20) and the constraint equation of Eqn. (21) into Eqn. 
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dicates the multiplication factor of the initial dynamic 
equation after the addition of the mass at the location 1x .
The derived equation can be expanded to the addition of m
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where I represents the mm 22 × identity matrix, M is an 

mm 22 × mass matrix, A is a Boolean matrix to represent 
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The newly updated eigenfunction estimates the modal 

displacement curve for the beam with added masses by 
taking least square fitting method.  The modal variations 
deviated from the initial modal displacement mean the 
effect due to the added masses.

The decoupling of subsystems from an entire system is 
similar to the substructuring process.  However, taking 
into account that the decoupling is the opposite process of 
the substructuring, the minus sign of the second term in the 
right-hand side of Eqn. (23) should be changed to adverse 
sign for decoupling of subsystems. And the decoupling 
process indicates the relation between the entire system 
and the removed subsystem. The decoupling of the m
masses from an entire system also can be expressed as
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The second term in the right-hand side of Eqn. (24) repre-
sents the variations of the dynamic response caused by the 
removal of the masses.  The resulting eigenmodes are 
estimated by multiplying the coefficients of Eqn. (24) and 
the eigenfunction of entire system.

Fig. 4 Substructuring and decoupling of subsystems

Example 2)
Consider a simply supported beam in Fig. 5 modeled as 

a continuous system. Assume that seven masses were in-
stalled on seven different locations indicated in Table 3.
The beam has elastic modulus of GPa200 , cross-
sectional area of mm400mm300 × , length of mm6000
and unit mass per volume of 3000kg/m8 . Utilizing the 
proper boundary conditions into Eqn. (17) and arranging 
the result, the eigenfunction of the beam corresponding to 
the first mode can be derived as

( ) xxv βsin= (25)

                                            (20)

The constraint condition between two systems of the continuous 
system and the discrete system can be also written as

 1111 TT φφ =                                                                   (21)

where ( ) ( )1111 xx φφ =  because of the geometric constraint.  
Utilizing the dynamic equation of Eqns. (19b) and (20) and the 
constraint equation of Eqn. (21) into Eqn. (6), it can be written as
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The second term in the right-hand side of Eqn. (24) represents 
the variations of the dynamic response caused by the removal of the 
masses.  The resulting eigenmodes are estimated by multiplying the 
coefficients of Eqn. (24) and the eigenfunction of entire system.

1m .  The interaction requires the coincidence of modal 
displacement at the connection point between two systems. 
It can be mentioned as a constraint.  
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Eqn. (8) can be written by

01111
4 =+ TATEI φρφβ (20)
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side of Eqn. (22) represents the variation of dynamic varia-
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dicates the multiplication factor of the initial dynamic 
equation after the addition of the mass at the location 1x .
The derived equation can be expanded to the addition of m
rigid masses along the beam in Fig. 4 and it is written as
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where I represents the mm 22 × identity matrix, M is an 

mm 22 × mass matrix, A is a Boolean matrix to represent 
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The newly updated eigenfunction estimates the modal 

displacement curve for the beam with added masses by 
taking least square fitting method.  The modal variations 
deviated from the initial modal displacement mean the 
effect due to the added masses.

The decoupling of subsystems from an entire system is 
similar to the substructuring process.  However, taking 
into account that the decoupling is the opposite process of 
the substructuring, the minus sign of the second term in the 
right-hand side of Eqn. (23) should be changed to adverse 
sign for decoupling of subsystems. And the decoupling 
process indicates the relation between the entire system 
and the removed subsystem. The decoupling of the m
masses from an entire system also can be expressed as
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The second term in the right-hand side of Eqn. (24) repre-
sents the variations of the dynamic response caused by the 
removal of the masses.  The resulting eigenmodes are 
estimated by multiplying the coefficients of Eqn. (24) and 
the eigenfunction of entire system.

Fig. 4 Substructuring and decoupling of subsystems

Example 2)
Consider a simply supported beam in Fig. 5 modeled as 

a continuous system. Assume that seven masses were in-
stalled on seven different locations indicated in Table 3.
The beam has elastic modulus of GPa200 , cross-
sectional area of mm400mm300 × , length of mm6000
and unit mass per volume of 3000kg/m8 . Utilizing the 
proper boundary conditions into Eqn. (17) and arranging 
the result, the eigenfunction of the beam corresponding to 
the first mode can be derived as

( ) xxv βsin= (25)

Figure 4. Substructuring and decoupling of subsystems

Example 2)
Consider a simply supported beam in Fig. 5 modeled as a 

continuous system. Assume that seven masses were installed on 
seven different locations indicated in Table 3.  The beam has elastic 
modulus of 

1m .  The interaction requires the coincidence of modal 
displacement at the connection point between two systems. 
It can be mentioned as a constraint.  

The dynamic equation of the added mass at 1x can be 
expressed as

( ) 011 == xxvm  (19a)

or 0111 =Tm φ      (19b)

where 1φ means the mode shape at the location 1x and 
( )tT1 represents the generalized response function of time 

t.  And the dynamic equation of the beam at 1x from 
Eqn. (8) can be written by

01111
4 =+ TATEI φρφβ (20)

The constraint condition between two systems of the con-
tinuous system and the discrete system can be also written 
as

1111 TT φφ = (21)

where ( ) ( )1111 xx φφ = because of the geometric con-
straint.  Utilizing the dynamic equation of Eqns. (19b) 
and (20) and the constraint equation of Eqn. (21) into Eqn. 
(6), it can be written as
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side of Eqn. (22) represents the variation of dynamic varia-
tion due to the added mass. 
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dicates the multiplication factor of the initial dynamic 
equation after the addition of the mass at the location 1x .
The derived equation can be expanded to the addition of m
rigid masses along the beam in Fig. 4 and it is written as
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where I represents the mm 22 × identity matrix, M is an 
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The newly updated eigenfunction estimates the modal 

displacement curve for the beam with added masses by 
taking least square fitting method.  The modal variations 
deviated from the initial modal displacement mean the 
effect due to the added masses.

The decoupling of subsystems from an entire system is 
similar to the substructuring process.  However, taking 
into account that the decoupling is the opposite process of 
the substructuring, the minus sign of the second term in the 
right-hand side of Eqn. (23) should be changed to adverse 
sign for decoupling of subsystems. And the decoupling 
process indicates the relation between the entire system 
and the removed subsystem. The decoupling of the m
masses from an entire system also can be expressed as
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The second term in the right-hand side of Eqn. (24) repre-
sents the variations of the dynamic response caused by the 
removal of the masses.  The resulting eigenmodes are 
estimated by multiplying the coefficients of Eqn. (24) and 
the eigenfunction of entire system.

Fig. 4 Substructuring and decoupling of subsystems

Example 2)
Consider a simply supported beam in Fig. 5 modeled as 

a continuous system. Assume that seven masses were in-
stalled on seven different locations indicated in Table 3.
The beam has elastic modulus of GPa200 , cross-
sectional area of mm400mm300 × , length of mm6000
and unit mass per volume of 3000kg/m8 . Utilizing the 
proper boundary conditions into Eqn. (17) and arranging 
the result, the eigenfunction of the beam corresponding to 
the first mode can be derived as

( ) xxv βsin= (25)

, cross-sectional area of 

1m .  The interaction requires the coincidence of modal 
displacement at the connection point between two systems. 
It can be mentioned as a constraint.  

The dynamic equation of the added mass at 1x can be 
expressed as

( ) 011 == xxvm  (19a)

or 0111 =Tm φ      (19b)

where 1φ means the mode shape at the location 1x and 
( )tT1 represents the generalized response function of time 

t.  And the dynamic equation of the beam at 1x from 
Eqn. (8) can be written by

01111
4 =+ TATEI φρφβ (20)

The constraint condition between two systems of the con-
tinuous system and the discrete system can be also written 
as

1111 TT φφ = (21)

where ( ) ( )1111 xx φφ = because of the geometric con-
straint.  Utilizing the dynamic equation of Eqns. (19b) 
and (20) and the constraint equation of Eqn. (21) into Eqn. 
(6), it can be written as
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side of Eqn. (22) represents the variation of dynamic varia-
tion due to the added mass. 
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dicates the multiplication factor of the initial dynamic 
equation after the addition of the mass at the location 1x .
The derived equation can be expanded to the addition of m
rigid masses along the beam in Fig. 4 and it is written as
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where I represents the mm 22 × identity matrix, M is an 

mm 22 × mass matrix, A is a Boolean matrix to represent 
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The newly updated eigenfunction estimates the modal 

displacement curve for the beam with added masses by 
taking least square fitting method.  The modal variations 
deviated from the initial modal displacement mean the 
effect due to the added masses.

The decoupling of subsystems from an entire system is 
similar to the substructuring process.  However, taking 
into account that the decoupling is the opposite process of 
the substructuring, the minus sign of the second term in the 
right-hand side of Eqn. (23) should be changed to adverse 
sign for decoupling of subsystems. And the decoupling 
process indicates the relation between the entire system 
and the removed subsystem. The decoupling of the m
masses from an entire system also can be expressed as

( ) FMAAMMIG 12/12/122

11

−+−−




 +=





















mmT

T
T








φ

φ
φ

(24)

The second term in the right-hand side of Eqn. (24) repre-
sents the variations of the dynamic response caused by the 
removal of the masses.  The resulting eigenmodes are 
estimated by multiplying the coefficients of Eqn. (24) and 
the eigenfunction of entire system.

Fig. 4 Substructuring and decoupling of subsystems

Example 2)
Consider a simply supported beam in Fig. 5 modeled as 

a continuous system. Assume that seven masses were in-
stalled on seven different locations indicated in Table 3.
The beam has elastic modulus of GPa200 , cross-
sectional area of mm400mm300 × , length of mm6000
and unit mass per volume of 3000kg/m8 . Utilizing the 
proper boundary conditions into Eqn. (17) and arranging 
the result, the eigenfunction of the beam corresponding to 
the first mode can be derived as

( ) xxv βsin= (25)

, length of 

1m .  The interaction requires the coincidence of modal 
displacement at the connection point between two systems. 
It can be mentioned as a constraint.  

The dynamic equation of the added mass at 1x can be 
expressed as

( ) 011 == xxvm  (19a)

or 0111 =Tm φ      (19b)

where 1φ means the mode shape at the location 1x and 
( )tT1 represents the generalized response function of time 

t.  And the dynamic equation of the beam at 1x from 
Eqn. (8) can be written by

01111
4 =+ TATEI φρφβ (20)

The constraint condition between two systems of the con-
tinuous system and the discrete system can be also written 
as

1111 TT φφ = (21)

where ( ) ( )1111 xx φφ = because of the geometric con-
straint.  Utilizing the dynamic equation of Eqns. (19b) 
and (20) and the constraint equation of Eqn. (21) into Eqn. 
(6), it can be written as
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side of Eqn. (22) represents the variation of dynamic varia-
tion due to the added mass. 
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dicates the multiplication factor of the initial dynamic 
equation after the addition of the mass at the location 1x .
The derived equation can be expanded to the addition of m
rigid masses along the beam in Fig. 4 and it is written as
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where I represents the mm 22 × identity matrix, M is an 
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The newly updated eigenfunction estimates the modal 

displacement curve for the beam with added masses by 
taking least square fitting method.  The modal variations 
deviated from the initial modal displacement mean the 
effect due to the added masses.

The decoupling of subsystems from an entire system is 
similar to the substructuring process.  However, taking 
into account that the decoupling is the opposite process of 
the substructuring, the minus sign of the second term in the 
right-hand side of Eqn. (23) should be changed to adverse 
sign for decoupling of subsystems. And the decoupling 
process indicates the relation between the entire system 
and the removed subsystem. The decoupling of the m
masses from an entire system also can be expressed as
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The second term in the right-hand side of Eqn. (24) repre-
sents the variations of the dynamic response caused by the 
removal of the masses.  The resulting eigenmodes are 
estimated by multiplying the coefficients of Eqn. (24) and 
the eigenfunction of entire system.

Fig. 4 Substructuring and decoupling of subsystems

Example 2)
Consider a simply supported beam in Fig. 5 modeled as 

a continuous system. Assume that seven masses were in-
stalled on seven different locations indicated in Table 3.
The beam has elastic modulus of GPa200 , cross-
sectional area of mm400mm300 × , length of mm6000
and unit mass per volume of 3000kg/m8 . Utilizing the 
proper boundary conditions into Eqn. (17) and arranging 
the result, the eigenfunction of the beam corresponding to 
the first mode can be derived as

( ) xxv βsin= (25)

 and unit mass per volume of 

1m .  The interaction requires the coincidence of modal 
displacement at the connection point between two systems. 
It can be mentioned as a constraint.  

The dynamic equation of the added mass at 1x can be 
expressed as

( ) 011 == xxvm  (19a)

or 0111 =Tm φ      (19b)

where 1φ means the mode shape at the location 1x and 
( )tT1 represents the generalized response function of time 

t.  And the dynamic equation of the beam at 1x from 
Eqn. (8) can be written by

01111
4 =+ TATEI φρφβ (20)

The constraint condition between two systems of the con-
tinuous system and the discrete system can be also written 
as

1111 TT φφ = (21)

where ( ) ( )1111 xx φφ = because of the geometric con-
straint.  Utilizing the dynamic equation of Eqns. (19b) 
and (20) and the constraint equation of Eqn. (21) into Eqn. 
(6), it can be written as
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side of Eqn. (22) represents the variation of dynamic varia-
tion due to the added mass. 
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dicates the multiplication factor of the initial dynamic 
equation after the addition of the mass at the location 1x .
The derived equation can be expanded to the addition of m
rigid masses along the beam in Fig. 4 and it is written as
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where I represents the mm 22 × identity matrix, M is an 

mm 22 × mass matrix, A is a Boolean matrix to represent 
the interfaces between two systems,
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The newly updated eigenfunction estimates the modal 

displacement curve for the beam with added masses by 
taking least square fitting method.  The modal variations 
deviated from the initial modal displacement mean the 
effect due to the added masses.

The decoupling of subsystems from an entire system is 
similar to the substructuring process.  However, taking 
into account that the decoupling is the opposite process of 
the substructuring, the minus sign of the second term in the 
right-hand side of Eqn. (23) should be changed to adverse 
sign for decoupling of subsystems. And the decoupling 
process indicates the relation between the entire system 
and the removed subsystem. The decoupling of the m
masses from an entire system also can be expressed as
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The second term in the right-hand side of Eqn. (24) repre-
sents the variations of the dynamic response caused by the 
removal of the masses.  The resulting eigenmodes are 
estimated by multiplying the coefficients of Eqn. (24) and 
the eigenfunction of entire system.

Fig. 4 Substructuring and decoupling of subsystems

Example 2)
Consider a simply supported beam in Fig. 5 modeled as 

a continuous system. Assume that seven masses were in-
stalled on seven different locations indicated in Table 3.
The beam has elastic modulus of GPa200 , cross-
sectional area of mm400mm300 × , length of mm6000
and unit mass per volume of 3000kg/m8 . Utilizing the 
proper boundary conditions into Eqn. (17) and arranging 
the result, the eigenfunction of the beam corresponding to 
the first mode can be derived as

( ) xxv βsin= (25)

. Utilizing the proper boundary conditions into Eqn. (17) and 
arranging the result, the eigenfunction of the beam corresponding 
to the first mode can be derived as

     ( ) xxv βsin=                                                                            (25)

1m .  The interaction requires the coincidence of modal 
displacement at the connection point between two systems. 
It can be mentioned as a constraint.  

The dynamic equation of the added mass at 1x can be 
expressed as

( ) 011 == xxvm  (19a)

or 0111 =Tm φ      (19b)

where 1φ means the mode shape at the location 1x and 
( )tT1 represents the generalized response function of time 

t.  And the dynamic equation of the beam at 1x from 
Eqn. (8) can be written by

01111
4 =+ TATEI φρφβ (20)

The constraint condition between two systems of the con-
tinuous system and the discrete system can be also written 
as

1111 TT φφ = (21)

where ( ) ( )1111 xx φφ = because of the geometric con-
straint.  Utilizing the dynamic equation of Eqns. (19b) 
and (20) and the constraint equation of Eqn. (21) into Eqn. 
(6), it can be written as
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side of Eqn. (22) represents the variation of dynamic varia-
tion due to the added mass. 
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dicates the multiplication factor of the initial dynamic 
equation after the addition of the mass at the location 1x .
The derived equation can be expanded to the addition of m
rigid masses along the beam in Fig. 4 and it is written as
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where I represents the mm 22 × identity matrix, M is an 

mm 22 × mass matrix, A is a Boolean matrix to represent 
the interfaces between two systems,
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The newly updated eigenfunction estimates the modal 

displacement curve for the beam with added masses by 
taking least square fitting method.  The modal variations 
deviated from the initial modal displacement mean the 
effect due to the added masses.

The decoupling of subsystems from an entire system is 
similar to the substructuring process.  However, taking 
into account that the decoupling is the opposite process of 
the substructuring, the minus sign of the second term in the 
right-hand side of Eqn. (23) should be changed to adverse 
sign for decoupling of subsystems. And the decoupling 
process indicates the relation between the entire system 
and the removed subsystem. The decoupling of the m
masses from an entire system also can be expressed as
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The second term in the right-hand side of Eqn. (24) repre-
sents the variations of the dynamic response caused by the 
removal of the masses.  The resulting eigenmodes are 
estimated by multiplying the coefficients of Eqn. (24) and 
the eigenfunction of entire system.

Fig. 4 Substructuring and decoupling of subsystems

Example 2)
Consider a simply supported beam in Fig. 5 modeled as 

a continuous system. Assume that seven masses were in-
stalled on seven different locations indicated in Table 3.
The beam has elastic modulus of GPa200 , cross-
sectional area of mm400mm300 × , length of mm6000
and unit mass per volume of 3000kg/m8 . Utilizing the 
proper boundary conditions into Eqn. (17) and arranging 
the result, the eigenfunction of the beam corresponding to 
the first mode can be derived as

( ) xxv βsin= (25)

Figure 5. A simply supported beam as a continuous system (unit:mm)

The eigenmode of the entire system to be composed of the beam 
and discrete masses is estimated based on the proposed method.  
Utilizing the compatibility conditions at the interfacial positions 
between the beam and the additional masses and their dynamic 
equations into Eqn. (23), the mode shapes at the measured nodes 
are estimated.  Taking the linear square fitting method based on 
the seven modal data and the boundary conditions, the eigenmode 
function of the beam to install the masses is estimated. 

Fig. 5 A simply supported beam as a continuous system 
(unit:mm)

The eigenmode of the entire system to be composed of 
the beam and discrete masses is estimated based on the 
proposed method.  Utilizing the compatibility conditions 
at the interfacial positions between the beam and the addi-
tional masses and their dynamic equations into Eqn. (23), 
the mode shapes at the measured nodes are estimated.  
Taking the linear square fitting method based on the seven 
modal data and the boundary conditions, the eigenmode 
function of the beam to install the masses is estimated. 
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Fig. 6 Comparison of mode shape curve before and after 

the addition of masses; (a) modal displacement, (b) modal 
strain. The solid and dashed lines represent the initial beam 
and the beam modified by masses, respectively.

Figure 6 represents the modal displacement curve and 
strain curve of the system corresponding to the first natural 
frequency. Both curves were normalized with respect to 
the maximum modal displacement and the maximum 
modal strain of the initial system.  The difference be-
tween two states represents the variation that the masses 
affect the eigenmode of the beam.  It is observed that the 
proposed method can properly describe the mode shape of 
the synthesized system. 

Example 3)

As an opposite of Example 2, this application estimates 
the mode shape of residual system to remove the masses 
from an entire beam system as shown in Fig. 7. The resid-
ual system coincides with the initial system without the 
additional masses of example 2.  Substituting the dynam-
ic equations of the entire system and removed subsystems, 
and the compatibility conditions between two systems into 
Eqn. (24), the modal displacements of the residual system 
at the interfacial nodes are obtained and its eigenfunction 
is statistically derived. Figure 8 compares the modal dis-
placement and strain corresponding to the first natural fre-
quency of the initial and residual systems.  Both modal 
curves were normalized with respect to the maximum 
modal displacement value of the initial system.  It is ex-
pected that the difference in the modal responses comes 
from the removal of masses.

Table 3 Masses and their locations installed on the beam
Location

(mm)
900 1440 2220 3060 3840 4620 5400

Masses
(kg)

30 30 30 30 30 30 30

This method is offering the substructuring and decou-
pling methods of substructures in the continuous system 
unlike the existing methods to consider the discrete system. 
The substructuring and decoupling of substructures are 
performed by the compatibility conditions between them.  
The proposed method can be utilized in the dynamic anal-
ysis to combine small substructures into a huge structure 
and to tear small substructures from a complex structure.

Fig. 7 Decoupled residual system(unit:mm)
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Fig. 5 A simply supported beam as a continuous system 
(unit:mm)

The eigenmode of the entire system to be composed of 
the beam and discrete masses is estimated based on the 
proposed method.  Utilizing the compatibility conditions 
at the interfacial positions between the beam and the addi-
tional masses and their dynamic equations into Eqn. (23), 
the mode shapes at the measured nodes are estimated.  
Taking the linear square fitting method based on the seven 
modal data and the boundary conditions, the eigenmode 
function of the beam to install the masses is estimated. 
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Fig. 6 Comparison of mode shape curve before and after 

the addition of masses; (a) modal displacement, (b) modal 
strain. The solid and dashed lines represent the initial beam 
and the beam modified by masses, respectively.

Figure 6 represents the modal displacement curve and 
strain curve of the system corresponding to the first natural 
frequency. Both curves were normalized with respect to 
the maximum modal displacement and the maximum 
modal strain of the initial system.  The difference be-
tween two states represents the variation that the masses 
affect the eigenmode of the beam.  It is observed that the 
proposed method can properly describe the mode shape of 
the synthesized system. 

Example 3)

As an opposite of Example 2, this application estimates 
the mode shape of residual system to remove the masses 
from an entire beam system as shown in Fig. 7. The resid-
ual system coincides with the initial system without the 
additional masses of example 2.  Substituting the dynam-
ic equations of the entire system and removed subsystems, 
and the compatibility conditions between two systems into 
Eqn. (24), the modal displacements of the residual system 
at the interfacial nodes are obtained and its eigenfunction 
is statistically derived. Figure 8 compares the modal dis-
placement and strain corresponding to the first natural fre-
quency of the initial and residual systems.  Both modal 
curves were normalized with respect to the maximum 
modal displacement value of the initial system.  It is ex-
pected that the difference in the modal responses comes 
from the removal of masses.

Table 3 Masses and their locations installed on the beam
Location

(mm)
900 1440 2220 3060 3840 4620 5400

Masses
(kg)

30 30 30 30 30 30 30

This method is offering the substructuring and decou-
pling methods of substructures in the continuous system 
unlike the existing methods to consider the discrete system. 
The substructuring and decoupling of substructures are 
performed by the compatibility conditions between them.  
The proposed method can be utilized in the dynamic anal-
ysis to combine small substructures into a huge structure 
and to tear small substructures from a complex structure.

Fig. 7 Decoupled residual system(unit:mm)

0 1000 2000 3000 4000 5000 6000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x-coordinate(mm)
N

o
rm

a
li
z
e

d
 m

o
d

a
l 
d

is
p

la
c
e

m
e

n
t

Initial system

Residual system

Figure 6. Comparison of mode shape curve before and after the addition of 
masses; (a) modal displacement, (b) modal strain. The solid and dashed lines 

represent the initial beam and the beam modified by masses, respectively.

Figure 6 represents the modal displacement curve and strain 
curve of the system corresponding to the first natural frequency.  
Both curves were normalized with respect to the maximum modal 
displacement and the maximum modal strain of the initial system.  
The difference between two states represents the variation that the 
masses affect the eigenmode of the beam.  It is observed that the 
proposed method can properly describe the mode shape of the 
synthesized system. 

Example 3)
As an opposite of Example 2, this application estimates the mode 

shape of residual system to remove the masses from an entire 
beam system as shown in Fig. 7. The residual system coincides 
with the initial system without the additional masses of example 
2.  Substituting the dynamic equations of the entire system and 
removed subsystems, and the compatibility conditions between 
two systems into Eqn. (24), the modal displacements of the residual 
system at the interfacial nodes are obtained and its eigenfunction is 
statistically derived. Figure 8 compares the modal displacement and 
strain corresponding to the first natural frequency of the initial and 
residual systems.  Both modal curves were normalized with respect 
to the maximum modal displacement value of the initial system.  It 
is expected that the difference in the modal responses comes from 
the removal of masses.
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This method is offering the substructuring and decoupling 
methods of substructures in the continuous system unlike 
the existing methods to consider the discrete system. The 
substructuring and decoupling of substructures are performed 
by the compatibility conditions between them.  The proposed 
method can be utilized in the dynamic analysis to combine small 
substructures into a huge structure and to tear small substructures 
from a complex structure.  

Location
(mm) 900 1440 2220 3060 3840 4620 5400

Masses
(kg) 30 30 30 30 30 30 30

Table 3. Masses and their locations installed on the beam 3. CONCLUSIONS

This work proposed analytical methods to estimate modal 
response of continuous system by substructuring and decoupling of 
subsystems using compatibility conditions at the interfaces between 
subsystems.  The proposed method based on the beam model of 
continuous system does not indicate accurate damage location 
but its vicinity to complete a fundamental mode.  The damage of 
single damaged beam locates in the vicinity of beginning or ending 
point to complete a fundamental mode that the squared modal 
displacement difference minimizes.  The damages of multiple 
damaged beam position in the vicinity of both ending points 
to complete a fundamental mode.  The validity of the proposed 
method was illustrated in several applications.  The method can be 
widely utilized in the dynamic synthesis of substructures and the 
dynamic tearing of substructures.
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Figure 7. Decoupled residual system(unit:mm)

Fig. 5 A simply supported beam as a continuous system 
(unit:mm)

The eigenmode of the entire system to be composed of 
the beam and discrete masses is estimated based on the 
proposed method.  Utilizing the compatibility conditions 
at the interfacial positions between the beam and the addi-
tional masses and their dynamic equations into Eqn. (23), 
the mode shapes at the measured nodes are estimated.  
Taking the linear square fitting method based on the seven 
modal data and the boundary conditions, the eigenmode 
function of the beam to install the masses is estimated. 
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Fig. 6 Comparison of mode shape curve before and after 

the addition of masses; (a) modal displacement, (b) modal 
strain. The solid and dashed lines represent the initial beam 
and the beam modified by masses, respectively.

Figure 6 represents the modal displacement curve and 
strain curve of the system corresponding to the first natural 
frequency. Both curves were normalized with respect to 
the maximum modal displacement and the maximum 
modal strain of the initial system.  The difference be-
tween two states represents the variation that the masses 
affect the eigenmode of the beam.  It is observed that the 
proposed method can properly describe the mode shape of 
the synthesized system. 

Example 3)

As an opposite of Example 2, this application estimates 
the mode shape of residual system to remove the masses 
from an entire beam system as shown in Fig. 7. The resid-
ual system coincides with the initial system without the 
additional masses of example 2.  Substituting the dynam-
ic equations of the entire system and removed subsystems, 
and the compatibility conditions between two systems into 
Eqn. (24), the modal displacements of the residual system 
at the interfacial nodes are obtained and its eigenfunction 
is statistically derived. Figure 8 compares the modal dis-
placement and strain corresponding to the first natural fre-
quency of the initial and residual systems.  Both modal 
curves were normalized with respect to the maximum 
modal displacement value of the initial system.  It is ex-
pected that the difference in the modal responses comes 
from the removal of masses.

Table 3 Masses and their locations installed on the beam
Location

(mm)
900 1440 2220 3060 3840 4620 5400

Masses
(kg)

30 30 30 30 30 30 30

This method is offering the substructuring and decou-
pling methods of substructures in the continuous system 
unlike the existing methods to consider the discrete system. 
The substructuring and decoupling of substructures are 
performed by the compatibility conditions between them.  
The proposed method can be utilized in the dynamic anal-
ysis to combine small substructures into a huge structure 
and to tear small substructures from a complex structure.

Fig. 7 Decoupled residual system(unit:mm)
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Figure 8. Comparison of mode shape curve before and after removing 
masses: (a) mode shape, (b) strain mode shape.  The solid and dashed lines 
represent the initial beam and the beam modified by masses, respectively.
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Fig. 8 Comparison of mode shape curve before and after 

removing masses: (a) mode shape, (b) strain mode shape.  
The solid and dashed lines represent the initial beam and 
the beam modified by masses, respectively.

3. CONCLUSIONS

This work proposed analytical methods to estimate 
modal response of continuous system by substructuring 
and decoupling of subsystems using compatibility condi-
tions at the interfaces between subsystems.  The proposed 
method based on the beam model of continuous system 
does not indicate accurate damage location but its vicinity 
to complete a fundamental mode.  The damage of single 
damaged beam locates in the vicinity of beginning or end-
ing point to complete a fundamental mode that the squared 
modal displacement difference minimizes.  The damages 
of multiple damaged beam position in the vicinity of both 
ending points to complete a fundamental mode.  The va-
lidity of the proposed method was illustrated in several 
applications. The method can be widely utilized in the 
dynamic synthesis of substructures and the dynamic tear-
ing of substructures.
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Fig. 8 Comparison of mode shape curve before and after 

removing masses: (a) mode shape, (b) strain mode shape.  
The solid and dashed lines represent the initial beam and 
the beam modified by masses, respectively.

3. CONCLUSIONS

This work proposed analytical methods to estimate 
modal response of continuous system by substructuring 
and decoupling of subsystems using compatibility condi-
tions at the interfaces between subsystems.  The proposed 
method based on the beam model of continuous system 
does not indicate accurate damage location but its vicinity 
to complete a fundamental mode.  The damage of single 
damaged beam locates in the vicinity of beginning or end-
ing point to complete a fundamental mode that the squared 
modal displacement difference minimizes.  The damages 
of multiple damaged beam position in the vicinity of both 
ending points to complete a fundamental mode.  The va-
lidity of the proposed method was illustrated in several 
applications. The method can be widely utilized in the 
dynamic synthesis of substructures and the dynamic tear-
ing of substructures.
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