• Title/Summary/Keyword: Dual-port memories

Search Result 10, Processing Time 0.018 seconds

An Efficient Test and Diagnosis Algorithm for Dual Port Memories (이중 포트 메모리를 위한 효과적인 테스트와 진단 알고리듬)

  • 김지혜;김홍식;김상욱;강성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.115-131
    • /
    • 2004
  • As dual port memories are being frequently used, test and diagnosis for dual port memories becomes more important. In this paper, anew diagnosis algerian which can classify faults in detail when the fault is detected during test process is developed. The new algerian increases its efficiency by using the information that can be obtained by test results as well as results using additional diagnostic pattern set. In addition the algorithm can diagnose various fault models for dual port memories.

An Effective Test and Diagnosis Algorithm for Dual-Port Memories

  • Park, Young-Kyu;Yang, Myung-Hoon;Kim, Yong-Joon;Lee, Dae-Yeal;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.555-564
    • /
    • 2008
  • This paper proposes a test algorithm that can detect and diagnose all the faults occurring in dual-port memories that can be accessed simultaneously through two ports. In this paper, we develop a new diagnosis algorithm that classifies faults in detail when they are detected while the test process is being developed. The algorithm is particularly efficient because it uses information that can be obtained by test results as well as results using an additional diagnosis pattern. The algorithm can also diagnose various fault models for dual-port memories.

  • PDF

A Study on Efficient Test Methodologies on Dual-port Embedded Memories (내장된 이중-포트 메모리의 효율적인 테스트 방법에 관한 연구)

  • Han, Jae-Cheon;Yang, Sun-Woong;Jin, Myoung-Gu;Chang, Hoon
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.8
    • /
    • pp.22-34
    • /
    • 1999
  • In this paper, an efficient test algorithm for embedded dual-port memories is presented. The proposed test algorithm can be used to test embedded dual-port memories faster than the conventional multi-port test algorithms and can be used to completely detect stuck-at faults, transition faults and coupling faults which are major target faults in embedded memories. Also, in this work, BIST which performs the proposed memory testing algorithm is designed using Verilog-HDL, and simulation and synthesis for BIST are performed using Cadence Verilog-XL and Synopsys Design-Analyzer. It has been shown that the proposed test algorithm has high efficiency through experiments on various size of embedded memories.

  • PDF

An Efficient Programmable Memory BIST for Dual-Port Memories (이중 포트 메모리를 위한 효율적인 프로그램 가능한 메모리 BIST)

  • Park, Young-Kyu;Han, Tae-Woo;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.8
    • /
    • pp.55-62
    • /
    • 2012
  • The development of memory design and process technology enabled the production of high density memory. As the weight of embedded memory within aggregate Systems-On-Chips(SoC) gradually increases to 80-90% of the number of total transistors, the importance of testing embedded dual-port memories in SoC increases. This paper proposes a new micro-code based programmable memory Built-In Self-Test(PMBIST) architecture for dual-port memories that support test various test algorithms. In addition, various test algorithms including March based algorithms and dual-port memory test algorithms are efficiently programmed through the proposed algorithm instruction set. This PMBIST has an optimized hardware overhead, since test algorithm can be implemented with the minimum bits by the optimized algorithm instructions.

Fault Diagnosis Algorithm for Dual Port Memories (이중 포트 메모리를 위한 고장 진단 알고리듬)

  • Park, Han-Won;Gang, Seong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.20-33
    • /
    • 2002
  • As dual port RAMs are widely used in the various applications, the need for an efficient algorithm to diagnose faults in dual port RAMs is increased. In this paper we propose an efficient algorithm that can diagnose all kinds of faults in dual port RAMs. In addition, the new algorithm can distinguish various fault models and locate the position related to each fault. Using the new algorithm, fault diagnosis for dual port RAMs can be performed efficiently and the performance evaluation with previous approaches proves the efficiency of the new algorithm.

An Efficient Test Algorithm for Dual Port Memory (이중 포트 메모리를 위한 효과적인 테스트 알고리듬)

  • 김지혜;송동섭;배상민;강성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • Due to the improvements in circuit design technique and manufacturing technique, complexity of a circuit is growing along with the demand for memories with large capacities. Likewise, as a memory capacity gets larger, testing gets harder and testing cost increases, and testing process in chip development gets larger as well. Therefore, a research on an effective test algorithm to improve the chip yield rate in a short time period is becoming an important task. This paper proposes an effective, March C-algorithm based, test algorithm that can also be applied to a dual-port memory since it considers all the fault types, which can be occurred in a single-port as well as in a dual-port memory, without increasing the test length.

An Efficiency Testing Algorithm for Realistic Faults in Dual-Port Memories (이중 포트 메모리의 실제적인 고장을 고려한 효율적인 테스트 알고리즘)

  • Park, Young-Kyu;Yang, Myung-Hoon;Kim, Yong-Joon;Lee, Dae-Yeal;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.72-85
    • /
    • 2007
  • The development of memory design and process technology enabled the production of high density memory. However, this increased the complexity of the memory making memory testing more complicated, and as a result, it brought about an increase in memory testing costs. Effective memory test algorithm must detect various types of defects within a short testing time, and especially in the case of port memory test algorithm, it must be able to detect single port memory defects, and all the defects in the dual port memory. The March A2PF algorithm proposed in this paper is an effective test algorithm that detects all types of defects relating to the duel port and single port memory through the short 18N test pattern.

Performance Evaluation and Optimization of Dual-Port SDRAM Architecture for Mobile Embedded Systems (모바일 내장형 시스템을 위한 듀얼-포트SDRAM의 성능 평가 및 최적화)

  • Yang, Hoe-Seok;Kim, Sung-Chan;Park, Hae-Woo;Kim, Jin-Woo;Ha, Soon-Hoi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.542-546
    • /
    • 2008
  • Recently dual-port SDRAM (DPSDRAM) architecture tailored for dual-processor based mobile embedded systems has been announced where a single memory chip plays the role of the local memories and the shared memory for both processors. In order to maintain memory consistency from simultaneous accesses of both ports, every access to the shared memory should be protected by a synchronization mechanism, which can result in substantial access latency. We propose two optimization techniques by exploiting the communication patterns of target applications: lock-priority scheme and static-copy scheme. Further, by dividing the shared bank into multiple blocks, we allow simultaneous accesses to different blocks thus achieve considerable performance gain. Experiments on a virtual prototyping system show a promising result - we could achieve about 20-50% performance gain compared to the base DPSDRAM architecture.

A Parallel Structure of SRAMs in embedded DRAMs for Testability (테스트 용이화를 위한 임베디드 DRAM 내 SRAM의 병열 구조)

  • Gook, In-Sung;Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.3-7
    • /
    • 2010
  • As the distance between signal lines in memories of high density ICs like SoCs decreases rapidly, failure occurs more frequently and effective memory test techniques are needed. In this paper, a new SRAM structure is proposed to decrease test complexity and test time for embedded DRAMs. In the presented technique, because memory test can be handled as a single port testing and read-write operation is possible at dual port without high complexity, test time can be much reduced.

  • PDF

Analysis of the Image Processing Speed by Line-Memory Type (라인메모리 유형에 따른 이미지 처리 속도의 분석)

  • Si-Yeon Han;Semin Jung;Bongsoon Kang
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.494-500
    • /
    • 2023
  • Image processing is currently used in various fields. Among them, autonomous vehicles, medical image processing, and robot control require fast image processing response speeds. To fulfill this requirement, hardware design for real-time processing is being actively researched. In addition to the size of the input image, the hardware processing speed is affected by the size of the inactive video periods that separate lines and frames in the image. In this paper, we design three different scaler structures based on the type of line memories, which is closely related to the inactive video periods. The structures are designed in hardware using the Verilog standard language, and synthesized into logic circuits in a field programmable gate array environment using Xilinx Vivado 2023.1. The synthesized results are used for frame rate analysis while comparing standard image sizes that can be processed in real time.