• Title/Summary/Keyword: Dual PLL

Search Result 64, Processing Time 0.023 seconds

A Study on the DP-PLL Controller Design using SOPC for NG-SDH Networks (SOPC를 활용한 NG-SDH 망용 DP-PLL 제어기 설계에 관한 연구)

  • Seon, Gwon-Seok;Park, Min-Sang
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.169-175
    • /
    • 2014
  • NG-SDH system is connected with networks throughout optical fibers. Network synchronization controller is a necessary for the data synchronization in each optical transmission system. In this paper, we have design and implementation the network synchronization controller using SOPC(system on a programmable chip) design technic. For this network synchronization controller we use FPGA in Altera. FPGA includes 32bit CPU, DPRAM(dual port ram), digital input/output port, transmitter and receiver framer, phase difference detector. We also confirm that designed network synchronization controller satisfies the ITU-T G.813 timing requirements.

A Design of Differential Voltage Clamped VCO for Improved Characteristics of Operating Frequency (개선된 동작 주파수 특성을 갖는 차동 전압 클램프 VCO 설계)

  • Kim, D.G.;Oh, R.;Woo, Y.S.;Sung, Man-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3181-3183
    • /
    • 2000
  • As the fact that the simple data of text and sound in early year have been changed to be high quality images and sounds. PLL(Phase-Locked Loop) system plays an important role in communication system. VCO(Voltage Controlled Oscillator) is the most important part in PLL system because it can have critical effects on operation of PLL. Recently, it has been raised the necessity of high speed and high accuracy circuit application. In this paper, a new differential voltage clamped VCO using negative-skewed path is suggested. Using a dual-delay scheme to implement the VCO, higher operation frequency and wider tuning are achieved simultaneously. The dual-delay scheme means that both the negative skewed delay paths and the normal delay paths exist in the same ring oscillator. The negative skewed delay paths decrease the unit delay time of the ring oscillator below the single inverter delay time. As a result, higher operation frequency can be obtained. The whole characteristics of VCO are simulated by using HSPICE. Simulation results show that the resulting operating frequencies are 50% higher than those obtainable from the conventional approaches.

  • PDF

Simple Dividing Architecture of Dual-Modulus Prescaler Phase-Locked Loop for Wireless Communication (무선 통신용 Dual-Modulus Prescaler 위상고정루프(PLL)의 간단한 분주 구조)

  • 김태우;이순섭;최광석;김수원
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.271-274
    • /
    • 1999
  • This paper proposes a simple architecture of digital dividing block in dual-modulus prescaler phase-locked loop used in the wireless communication. Proposed architecture eliminates a swallow counter in the conventional one and demonstrates the advantages in reducing the power consumption and the gate-counts. Therefore, it is suitable for small die area and low power applications. The circuit is designed in a standard 0.35${\mu}{\textrm}{m}$ CMOS process.

  • PDF

An In-Band Noise Filtering 32-tap FIR-Embedded ΔΣ Digital Fractional-N PLL

  • Lee, Jong Mi;Jee, Dong-Woo;Kim, Byungsub;Park, Hong-June;Sim, Jae-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.342-348
    • /
    • 2015
  • This paper presents a 1.9-GHz digital ${{\Delta}{\Sigma}}$ fractional-N PLL with a finite impulse response (FIR) filter embedded for noise suppression. The proposed digital implementation of FIR provides a simple method of increasing the number of taps without complicated calculation for gain matching. This work demonstrates 32 tap FIR filtering for the first time and successfully filtered the in-band phase noise generated from delta-sigma modulator (DSM). Design considerations are also addressed to find the optimum number of taps when the resolution of time-to-digital converter (TDC) is given. The PLL, fabricated in $0.11-{\mu}m$ CMOS, achieves a well-regulated in-band phase noise of less than -100 dBc/Hz for the entire range inside the bandwidth of 3 MHz. Compared with the conventional dual-modulus division, the proposed PLL shows an overall noise suppression of about 15dB both at in-band and out-of-band region.

Design of Fractional-N Digital PLL for IoT Application (IoT 어플리케이션을 위한 분수분주형 디지털 위상고정루프 설계)

  • Kim, Shinwoong
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.800-804
    • /
    • 2019
  • This paper presents a dual-loop sub-sampling digital PLL for a 2.4 GHz IoT applications. The PLL initially performs a divider-based coarse lock and switches to a divider-less fine sub-sampling lock. It achieves a low in-band phase noise performance by enabling the use of a high resolution time-to-digital converter (TDC) and a digital-to-time converter (DTC) in a selected timing range. To remove the difference between the phase offsets of the coarse and fine loops, a phase offset calibration scheme is proposed. The phase offset of the fine loop is estimated during the coarse lock and reflected in the coarse lock process, resulting in a smooth transition to the fine lock with a stable fast settling. The proposed digital PLL is designed by SystemVerilog modeling and Verilog-HDL and fully verified with simulations.

Output Phase Synchronization Method of Inverter for Parallel Operation of Uninterruptible Power System (무정전전원장치 병렬운전을 위한 인버터의 출력 위상 동기화 방법)

  • Kim, Heui-Joo;Park, Jong-Myeon;Oh, Se-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.235-241
    • /
    • 2020
  • In this paper, we propose the bus/bypass synchronization phase lock loop (B-Sync PLL) method using each phase voltage controller of a parallel UPS inverter. The B-Sync PLL included in each phase voltage control system of parallel UPS inverters has the transient response and the phase synchronization error at grid normal or blackout. The validity of this method is verified by simulation and experiment. As a result, the parallel UPS inverters using the proposed method confirmed that the output phase was continuously synchronized when a grid blackout, improving the transient response characteristics for stable load power supply and equal load sharing.

Design of a CMOS PLL with a Current Pumping Algorithm for Clock Syncronization (전류펌핑 알고리즘을 이용한 클락 동기용 CMOS PLL 설계)

  • 성혁준;윤광섭;강진구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.183-192
    • /
    • 2000
  • In this paper, the dual looped CMOS PLL with 3-250MHz input locking range at a single 13.3V is designed. This paper proposed a new PLL architecture with a current pumping algorithm to improve voltage-to-frequencylinearity of VCO(Voltage Controlled Oscillator). The designed VCO operates at a wide frequency range of75.8MHz-lGHz with a high linearity. Also, PFD(Phase frequency Detector) circuit preventing voltage fluctuation of the charge pump with loop filter circuit under the locked condition is designed. The simulation results of the PLL using 0.6 um N-well single poly triple metal CMOS technology illustrate a locking time of 3.5 us, a power dissipation of 92mW at 1GHz operating frequency with 125MHz of input frequency. Measured results show that the phase noise of VCO with V-I converter is -100.3dBc/Hz at a 100kHz offset frequency.

  • PDF

Laser Doppler Vibrometer with Self Vibration Compensation (자체 진동 보상기능을 가진 레이저 도플러 진동측정계에 관한 연구)

  • Lee, Young-Jin;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.53-55
    • /
    • 2001
  • A dual probe laser Doppler vibrometer (LDV) that has one laser source and provides two independent object beams has been developed for the first time. An electronic circuit that converts light signal to electronic signal has been also developed using phase locked loop(PLL). It was found that this types of dual probe LDV can be used in differential mode and self-vibration compensation mode.

  • PDF

Design of a 2.5GHz $0.25{\mu}m$ CMOS Dual-Modulus Prescaler (2.5GHz $0.25{\mu}m$ CMOS Dual-Modulus 프리스케일러 설계)

  • Oh, K.C.;Kang, K.S.;Park, J.T.;Yu, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.476-478
    • /
    • 2006
  • A prescaler is an essential building block for PLL-based frequency synthesizers and must satisfy high-speed and low-power characteristics. The design of D-flip flips used in the prescaler implementation is thus critical. In this paper a 64/65, 128/129 dual-modulus prescaler is designed using a $0.25{\mu}m$ CMOS process. In the design a new dynamic D-flip flop is employed, where glitches are minimized using discharge suppression scheme, speed is improved by making balanced propagation delay, and low power consumption is achieved by removing unnecessary discharge. The designed prescaler operates up to 2.5GHz and consumes 3.1mA at 2.5GHz operation.

  • PDF

A Buck Converter with PLL-based PWM/PFM Integrated Control (PLL 기반 PWM/PFM 통합 제어 방식의 벅 컨버터)

  • Heo, Jung;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.8
    • /
    • pp.35-40
    • /
    • 2012
  • In DC-DC converters, a PWM/PFM dual mode control method is commonly used to maintain a high efficiency over a wide range of load variation. Since the control mode is selected according to the load condition, the chip area is increased due to additional circuit for mode control and the optimum efficiency cannot be achieved around the mode transition point. To solve such problems, a new integrated control method is proposed in this paper, in which a PLL is used in the current mode PWM control circuit instead of an oscillator. The proposed integrated control method is verified through a design of a buck converter using PSIM simulation. Simulation of the complete buck converter circuit by Cadence Spectre showed a maximum efficiency of 94.7% at a load current of 250mA and an efficiency of 85.4% at a load current of 10mA under the light load condition.