• 제목/요약/키워드: Doped metal oxide

검색결과 145건 처리시간 0.034초

Nickel Doping on Cobalt Oxide Thin Film Using by Sputtering Process-a Route for Surface Modification for p-type Metal Oxide Gas Sensors

  • Kang, Jun-gu;Park, Joon-Shik;An, Byeong-Seon;Yang, Cheol-Woong;Lee, Hoo-Jeong
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1867-1872
    • /
    • 2018
  • This study proposes a route for surface modification for p-type cobalt oxide-based gas sensors. We deposit a thin layer of Ni on the Co oxide film by sputtering process and annealed at $350^{\circ}C$ for 15 min in air, which changes a typical sputtered film surface into one interlaced with a high density of hemispherical nanoparticles. Our in-depth materials characterization using transmission electron microscopy discloses that the microstructure evolution is the result of an extensive inter-diffusion of Co and Ni, and that the nanoparticles are nickel oxide dissolving some Co. Sensor performance measurement unfolds that the surface modification results in a significant sensitivity enhancement, nearly 200% increase for toluene (at $250^{\circ}C$) and CO (at $200^{\circ}C$) gases in comparison with the undoped samples.

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

Analysis of wet chemical tunnel oxide layer characteristics capped with phosphorous doped amorphous silicon for high efficiency crystalline Si solar cell application

  • Kang, Ji-yoon;Jeon, Minhan;Oh, Donghyun;Shim, Gyeongbae;Park, Cheolmin;Ahn, Shihyun;Balaji, Nagarajan;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.406-406
    • /
    • 2016
  • To get high efficiency n-type crystalline silicon solar cells, passivation is one of the key factor. Tunnel oxide (SiO2) reduce surface recombination as a passivation layer and it does not constrict the majority carrier flow. In this work, the passivation quality enhanced by different chemical solution such as HNO3, H2SO4:H2O2 and DI-water to make thin tunnel oxide layer on n-type crystalline silicon wafer and changes of characteristics by subsequent annealing process and firing process after phosphorus doped amorphous silicon (a-Si:H) deposition. The tunneling of carrier through oxide layer is checked through I-V measurement when the voltage is from -1 V to 1 V and interface state density also be calculated about $1{\times}1012cm-2eV-1$ using MIS (Metal-Insulator-Semiconductor) structure . Tunnel oxide produced by 68 wt% HNO3 for 5 min on $100^{\circ}C$, H2SO4:H2O2 for 5 min on $100^{\circ}C$ and DI-water for 60 min on $95^{\circ}C$. The oxide layer is measured thickness about 1.4~2.2 nm by spectral ellipsometry (SE) and properties as passivation layer by QSSPC (Quasi-Steady-state Photo Conductance). Tunnel oxide layer is capped with phosphorus doped amorphous silicon on both sides and additional annealing process improve lifetime from $3.25{\mu}s$ to $397{\mu}s$ and implied Voc from 544 mV to 690 mV after P-doped a-Si deposition, respectively. It will be expected that amorphous silicon is changed to poly silicon phase. Furthermore, lifetime and implied Voc were recovered by forming gas annealing (FGA) after firing process from $192{\mu}s$ to $786{\mu}s$. It is shown that the tunnel oxide layer is thermally stable.

  • PDF

PDMS 굴절 조정층이 Mn-Doped SnO2 (MTO)/Ag/MTO/PDMS/MTO 투명전극의 특성에 미치는 영향 (Effect of PDMS Index Matching Layer on Characteristics of Mn-Doped SnO2 (MTO)/Ag/MTO/PDMS/MTO Transparent Electrode)

  • 조영수;장건익
    • 한국전기전자재료학회논문지
    • /
    • 제31권6호
    • /
    • pp.408-411
    • /
    • 2018
  • We fabricated highly flexible Mn-doped $SnO_2$ (MTO)/Ag/MTO/polydimethylsiloxane (PDMS)/MTO multilayer transparent conducting films. To reduce refractive-index mismatching of the MTO/Ag/MTO/polyethylene terephthalate (PET), index-matching layers were inserted between the oxide-metal-oxide-structured films and the PET substrate. The PDMS layer was deposited by spin-coating after adjusting the mixing ratio of PDMS and hexane. We investigated the effects of the index-matching layer on the color and reflectance differences with different PDMS dilution ratios. As the dilution ratio increased from 1:100 to 1:130, the color difference increased slightly, while the reflectance difference decreased from 0.62 to 0.32. The MTO/Ag/MTO/PDMS/MTO film showed a transmittance of 87.18~87.68% at 550 nm. The highest value of the Haacke figure of merit was $47.54{\times}10^{-3}{\Omega}^{-1}$ for the dilution ratio of 1:130.

Extraction of Exact Layer Thickness of Ultra-thin Gate Dielectrics in Nanoscaled CMOS under Strong Inversion

  • Dey, Munmun;Chattopadhyay, Sanatan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권2호
    • /
    • pp.100-106
    • /
    • 2010
  • The impact of surface quantization on device parameters of a Si metal oxide semiconductor (MOS) capacitor has been analyzed in the present work. Variation of conduction band bending, position of discrete energy states, variation of surface potential, and the variation of inversion carrier concentration at charge centroid have been analyzed for different gate voltages, substrate doping concentrations and oxide thicknesses. Oxide thickness calculated from the experimental C-V data of a MOS capacitor is different from the actual oxide thickness, since such data include the effect of surface quantization. A correction factor has been developed considering the effect of charge centroid in presence of surface quantization at strong inversion and it has been observed that the correction due to surface quantization is crucial for highly doped substrate with thinner gate oxide.

Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구 (Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3)

  • 장익황;지상훈;백준열;이윤호;박태현;차석원
    • 대한기계학회논문집B
    • /
    • 제36권9호
    • /
    • pp.931-935
    • /
    • 2012
  • 본 연구에서는 저온형 연료전지와 고온형 연료전지의 작동 및 구성 요소 측면 단점들을 보완하기 위해 중온 영역에서 작동하는 박막 연료전지를 제작하였다. 박막 연료전지는 이트륨이 도핑된 바륨 지르코네이트(BYZ) 전해질과 백금 수소극/공기극으로 이루어져 있으며, 성능은 $350^{\circ}C$에서 측정하였다. 350nm의 두께를 가지는 백금 수소극은 다공성 기판 위에 스퍼터링 기법을 이용하여 증착하였다. BYZ전해질은 펄스레이저 기법을 이용하여 $1{\mu}m$ 증착하였고, 상부에 스퍼터링 기법을 이용하여 200nm의 두께를 가지는 백금 공기극을 증착하였다. 개회로 전압은 약 0.81V이었고, 최대 출력 성능은 11.9mW/$cm^2$이었다.

Sensing Properties of Ga-doped ZnO Nanowire Gas Sensor

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권2호
    • /
    • pp.78-81
    • /
    • 2015
  • Pure ZnO and ZnO nanowires doped with 3 wt.% Ga (‘3GZO’) were grown by pulsed laser deposition in a furnace system. The doping of Ga in ZnO nanowires was analyzed by observing the optical and chemical properties of the doped nanowires. The diameter and length of nanowires were under 200 nm and several ${\mu}m$, respectively. Changes of significant resistance were observed and the sensitivities of ZnO and 3GZO nanowires were compared. The sensitivities of ZnO and 3GZO nanowire sensors measured at 300℃ for 1 ppm of ethanol gas were 97% and 48%, respectively.

Effect of Metal Oxide on the Superconductivity of YBCO

  • Lee, Sang-Heon
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1241-1242
    • /
    • 2006
  • Electromagnetic properties of $CeO_2$ doped and undoped YBaCuO superconductors were evaluated to investigate the effect of pinning center on the magnetization and magnetic shielding. The variation $\DeltaM$ with doping was maximum for 3% doping and decrease with further doping. The magnetic shielding was evaluated by measuring the induced voltage in secondary coil and the voltage initially set to 0.5V, decreased to 0.17V and 0.28V respectively for the undoped and 3% $CeO_2$ doped sample. The much less change in the induced voltage for the 3% doped sample is attributed to the increased flux shielding by shielding vortex current. The $CeO_2$ was converted to fine $BaCeO_3$ particles which were trapped in YBaCuO superconductor during the reaction sintering. The trapped fine particles, $BaCeO_3$ may be acted as a flux pinning center.

  • PDF

몰리브덴 산화물이 도핑된 티타늄 나노튜브전극의 수소 발생 반응 연구 (Study of Hydrogen Evolution Reaction by Molybdenum Oxide Doped TiO2 Nanotubes)

  • 오기석;유현석;이기백;최진섭
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.521-529
    • /
    • 2016
  • In this study, titanium nanotubes, prepared by anodization method, showing high surface and strong chemical stability in acidic and basic media, have been employed for the application to the electrodes for water splitting in KOH solution. Due to its high polarization resistance of $TiO_2$ itself, proper catalysts are essentially required to reduce overpotentials for water oxidation and reduction. Most of academic literature showed noble metal catalysts for foreign dopants in $TiO_2$ electrodes. From commercialization point of view, screening of low-cost catalyst is important. Herein, we propose molybdenum oxide as low-cost catalysts among various catalysts tested in the experiments, which exhibits the highest performance for hydrogen evolution reaction in highly alkaline solution. We showed that molybdenum oxide doped electrode can be operated in extreme acidic and basic conditions as well.

Hole Transfer Layer p-doped with a Metal Oxide for Low Voltage Operation of OLEDs

  • Shin, Won-Ju;Lee, Je-Yun;Kim, Jae-Chang;Yoon, Tae-Hoon;Kim, Tae-Shick;Song, Ok-Keun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.435-438
    • /
    • 2007
  • $V_{2}O_{5}$ was tested as a p-dopant for lower operating voltage and higher stability of OLEDs. Low voltage and high stability were achieved using this doping layer. It can be separated to bulk and interface contributions and the latter is a more dominant factor both of operation voltage and stability.

  • PDF