Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.6.408

Effect of PDMS Index Matching Layer on Characteristics of Mn-Doped SnO2 (MTO)/Ag/MTO/PDMS/MTO Transparent Electrode  

Jo, Young-Su (Department of Materials Engineering, Chungbuk National University)
Jang, Gun-Eik (Department of Materials Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.6, 2018 , pp. 408-411 More about this Journal
Abstract
We fabricated highly flexible Mn-doped $SnO_2$ (MTO)/Ag/MTO/polydimethylsiloxane (PDMS)/MTO multilayer transparent conducting films. To reduce refractive-index mismatching of the MTO/Ag/MTO/polyethylene terephthalate (PET), index-matching layers were inserted between the oxide-metal-oxide-structured films and the PET substrate. The PDMS layer was deposited by spin-coating after adjusting the mixing ratio of PDMS and hexane. We investigated the effects of the index-matching layer on the color and reflectance differences with different PDMS dilution ratios. As the dilution ratio increased from 1:100 to 1:130, the color difference increased slightly, while the reflectance difference decreased from 0.62 to 0.32. The MTO/Ag/MTO/PDMS/MTO film showed a transmittance of 87.18~87.68% at 550 nm. The highest value of the Haacke figure of merit was $47.54{\times}10^{-3}{\Omega}^{-1}$ for the dilution ratio of 1:130.
Keywords
Sputtering; OMO structure; Index-matching layer; IML; PDMS; Color difference; Reflectance difference;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Alzoubi, M. M. Hamasha, S. Lu, and B. Sammakia, J. Disp. Technol., 7, 593 (2011). [DOI: https://doi.org/10.1109/JDT.2011.2151830]   DOI
2 H. J. Moon, T. K. Gong, D. Kim, D. H. Choi, and D. I. Son, Trans. Electr. Electron. Mater., 17, 18 (2016). [DOI: http://doi.org/10.4313/TEEM.2016.17.1.18]   DOI
3 J. H. Kim, H. K. Lee, J. Y. Na, S. K. Kim, Y. Z. Yoo, and T. Y. Seong, Ceram. Int., 41, 8059 (2015). [DOI: https://doi.org/10.1016/j.ceramint.2015.03.002]   DOI
4 C. Guillen and J. Herrero, Thin Solid Films, 520, 1 (2011). [DOI: https://doi.org/10.1016/j.tsf.2011.06.091]   DOI
5 Z. M. Jarzebski and J. P. Morton, J. Electrochem. Soc., 123, 333C (1976). [DOI: https://doi.org./10.1149/1.2132647]   DOI
6 J. G. Kim, S. M. Yoon, and G. E. Jang, J. Ceram. Process. Res., 17, 80 (2016).
7 D. Chen, Sol. Energy Mater. Sol. Cells, 68, 313 (2001). [DOI: https://doi.org/10.1016/S0927-0248(00)00365-2]   DOI
8 C. H. Hong, J. H. Shin, B. K. Ju, K. H. Kim, N. M. Park, B. S. Kim, and W. S. Cheong, J. Nanosci. Nanotechnol., 13, 7756 (2013). [DOI: https://doi.org/10.1166/jnn.2013.7814]   DOI
9 A. L. Thangawng, R. S. Ruoff, M. A. Swartz, and M. R. Glucksberg, Biomed. Microdevices, 9, 587 (2007). [DOI: https://doi.org/10.1007/s10544-007-9070-6]   DOI
10 G. Haacke, J. Appl. Phys., 47, 4086 (1976). [DOI: https://doi.org/10.1063/1.323240]   DOI
11 S. M. Yoon, J. W. Choi, and G. E. Jang, J. Nanosci. Nanotechnol., 17, 7218 (2017). [DOI: https://doi.org/10.1166/jnn.2017.14753]   DOI
12 J. G. Kim and G. E. Jang, J. Ceram. Process. Res., 17, 103 (2016).