DOI QR코드

DOI QR Code

Nickel Doping on Cobalt Oxide Thin Film Using by Sputtering Process-a Route for Surface Modification for p-type Metal Oxide Gas Sensors

  • Kang, Jun-gu (School of Advanced Materials Sciences & Engineering, Sungkyunkwan University) ;
  • Park, Joon-Shik (Smart Sensor Research Center, Korea Electrical Technology Institute (KETI)) ;
  • An, Byeong-Seon (School of Advanced Materials Sciences & Engineering, Sungkyunkwan University) ;
  • Yang, Cheol-Woong (School of Advanced Materials Sciences & Engineering, Sungkyunkwan University) ;
  • Lee, Hoo-Jeong (School of Advanced Materials Sciences & Engineering, Sungkyunkwan University)
  • Received : 2018.10.29
  • Accepted : 2018.11.07
  • Published : 2018.12.30

Abstract

This study proposes a route for surface modification for p-type cobalt oxide-based gas sensors. We deposit a thin layer of Ni on the Co oxide film by sputtering process and annealed at $350^{\circ}C$ for 15 min in air, which changes a typical sputtered film surface into one interlaced with a high density of hemispherical nanoparticles. Our in-depth materials characterization using transmission electron microscopy discloses that the microstructure evolution is the result of an extensive inter-diffusion of Co and Ni, and that the nanoparticles are nickel oxide dissolving some Co. Sensor performance measurement unfolds that the surface modification results in a significant sensitivity enhancement, nearly 200% increase for toluene (at $250^{\circ}C$) and CO (at $200^{\circ}C$) gases in comparison with the undoped samples.

Keywords

Acknowledgement

Supported by : KEIT, KIAT, Ministry of Science, ICT and NST

References

  1. D. Selvakumar, P. Rajeshkumar, N. Dharmaraj and N. Kumar, Mater Today-Proc 3, 1725 (2016). https://doi.org/10.1016/j.matpr.2016.04.066
  2. T. Zhang, L. Liu, Q. Qi, S. Li and G. Lu, Sensor Actuat. B-Chem 139, 287 (2009). https://doi.org/10.1016/j.snb.2009.03.036
  3. F. Gyger et al., Particle & Particle Systems Characterization 31, 591 (2014). https://doi.org/10.1002/ppsc.201300241
  4. J-K. Choi et al., Sensor Actuat. B-Chem 150, 191 (2010). https://doi.org/10.1016/j.snb.2010.07.013
  5. S. Tian et al., Rsc Advances 3, 11823 (2013). https://doi.org/10.1039/c3ra40567b
  6. J-g. Kang, J-S. Park and H-J. Lee, Sensor Actuat. B-Chem 248, 1011 (2017). https://doi.org/10.1016/j.snb.2017.03.010
  7. G. Korotcenkov, V. Brinzari, L. Gulina and B. Cho, App. Surf. Sci. 353, 793 (2015). https://doi.org/10.1016/j.apsusc.2015.06.192
  8. N. Yamazoe, Y. Kurokawa and T. Seiyama, Sensor Actuat. 4, 283 (1983). https://doi.org/10.1016/0250-6874(83)85034-3
  9. G. Korotcenkov, Mater. Sci. Eng: R: Reports 61, 1 (2008). https://doi.org/10.1016/j.mser.2008.02.001
  10. J-W. Yoon, H-J. Kim, H-M. Jeong and J-H. Lee, Sensor Actuat. B-Chem 202, 263 (2014). https://doi.org/10.1016/j.snb.2014.05.081
  11. X. San et al., J. Alloy Compd. 636, 357 (2015). https://doi.org/10.1016/j.jallcom.2015.02.191
  12. S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell and J. Mol, Catal. A-Chem. 281, 49 (2008). https://doi.org/10.1016/j.molcata.2007.08.023
  13. J. Xu and J. Cheng, J. Alloy Compd. 686, 753 (2016). https://doi.org/10.1016/j.jallcom.2016.06.086
  14. J. Y. Kim et al., J. Phys. Chem. C 118, 25994 (2014). https://doi.org/10.1021/jp505791v
  15. N. Shaalan, M. Rashad, A. Moharram and M. Abdel-Rahim, Mat. Sci. Semicon. Proc. 46, 1 (2016). https://doi.org/10.1016/j.mssp.2016.01.020
  16. Z. Wen et al., Sensor Actuat. B-Chem 186, 172 (2013). https://doi.org/10.1016/j.snb.2013.05.093
  17. W-Y. Li, L-N. Xu and J. Chen, Adv. Funct. Mater. 15, 851 (2005). https://doi.org/10.1002/adfm.200400429
  18. S. Deng et al., Sensor Actuat. B-Chem 233, 615 (2016). https://doi.org/10.1016/j.snb.2016.04.138
  19. T. Zhou et al., Sensor Actuat. B-Chem 242, 369 (2017). https://doi.org/10.1016/j.snb.2016.11.067
  20. H-M. Jeong, H-J. Kim, P. Rai, J-W. Yoon and J-H. Lee, Sensor Actuat. B-Chem 201, 482 (2014). https://doi.org/10.1016/j.snb.2014.05.038
  21. C. Stella, N. Soundararajan and K. Ramachandran, J. Mater. Sci-Mater El. 26, 4178 (2015). https://doi.org/10.1007/s10854-015-2963-x
  22. T. Akamatsu, T. Itoh, N. Izu, W. Shin and K. Sato, Sensors 15, 8109 (2015). https://doi.org/10.3390/s150408109
  23. N. Appandairajan and J. Gopalakrishnan, P. Indian As-CHEM Sci 87, 115 (1978).
  24. Y. E. Roginskaya, O. Morozova, E. Lubnin, Y. E. Ulitina, G. Lopukhova and S. Trasatti, Langmuir 13, 4621 (1997). https://doi.org/10.1021/la9609128
  25. L. Hu, L. Wu, M. Liao, X. Hu and X. Fang, Adv. Funct. Mater. 22, 998 (2012). https://doi.org/10.1002/adfm.201102155
  26. Y. Zhu et al., J. Power Sources 267, 888 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.134
  27. J. Robin, Ann Chim(Paris) 10, 389 (1955).
  28. J. Tareen et al., Mater. Res. Bull. 19, 989 (1984). https://doi.org/10.1016/0025-5408(84)90212-5
  29. Y. Shimizu, $SnO_2$ Gas Sensor. In Encyclopedia of Applied Electrochemistry, edited by G. Kreysa, K-I. Ota and R. F. Savinell (Springer New York: New York, NY, 2014), p 1974.
  30. J. M. Suh et al., ACS Appl. Mater. Inter. 10, 1050 (2017).

Cited by

  1. Development of Co(OH)xF2−x Nanosheets for Acetone Gas Sensor Applications: Material Characterization and Sensor Performance Evaluation vol.10, pp.11, 2020, https://doi.org/10.3390/cryst10110968